首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Strigolactones (SL) and karrikins (KAR) both contain essential butenolide moieties, and both require the F-box protein MAX2 to control seed germination and photomorphogenesis in Arabidopsis thaliana. A new discovery that SL and KAR also require related α/β-hydrolase proteins for such activity suggests that they operate through a similar molecular mechanism. Based on structural similarity, a previously proposed mode of action for SL was also considered for KAR, but recent structure-activity studies suggest that this mechanism may not apply. Here we rationalise these observations into a hypothesis whereby different α/β-hydrolases distinguish SL and KAR by virtue of their non-butenolide moieties and catalyze nucleophilic attack on the butenolide. The products would be different for SL and KAR, and in the case of SL they have no biological activity. The inference is that nucleophilic attack on SL and KAR by α/β-hydrolases is required for their bioactivity, but the hydrolysis products are not.  相似文献   

6.
7.
8.
9.
10.
Chalcone is a secondary metabolite belonging to the group of flavonoids. It has shown strong phytotoxic activity on Arabidopsis roots, as inductor of programmed cell death, and inhibitor of root growth and root hair formation. Peroxidases are particularly abundant in root meristems and are involved in the formation and interconversion of reactive oxygen species (ROS), which play a critical role on root and root hair development. Therefore, we report here the role of peroxidases in Arabidopsis root development during chalcone treatment. A strong inhibition of peroxidase activity was detected in the apical root meristems after chalcone treatment, which reflects the important role of these enzymes on the mode of action of this secondary metabolite.  相似文献   

11.
12.
Branching is an important step in higher plant development, which not only determines the configuration of the plant directly, but also affects its adaptability to the environment. The interactions between hormones, genes, environmental and other factors subtly regulate the process of branching. Strigolactone is a newly recognized phytohormone and its content and distribution might be a key factor affecting branching. This review is focused on the genes related to synthesis and transduction pathway of strigolactone, and summarizes the inhibitory role of strigolactone in plant branching. Discussions about the issues to be clarified and prospects of the future research were also proposed.  相似文献   

13.
14.
At a concentration of 9.6 x 10(-5)M, 2,6-diaminopurine (DAP) completely inhibited cell enlargement, cell division, and DNA synthesis (determined by microphotometric measurement of Feulgen dye) in Vicia faba roots. Inhibition of cell enlargement was partially reversed by adenine, guanine, xanthine, adenosine, and desoxyadenosine. Guanine and the nucleosides gave the greatest reversal, suggesting that one point of DAP action upon cell enlargement is a disruption of nucleoside or nucleotide metabolism, possibly during pentosenucleic acid synthesis. DAP inhibited cell division by preventing onset of prophase. At the concentrations used it had no significant effect on the rate or appearance of mitoses in progress. Inhibition of entrance into prophase was not directly due to inhibition of DNA synthesis since approximately half of the inhibited nuclei had the doubled (4C) amount of DNA. Adenine competitively reversed DAP inhibition of cell division, giving an inhibition index of about 0.5. Guanine gave a slight reversal while xanthine, hypoxanthine, adenosine, and desoxyadenosine were inactive. A basic need for free adenine for the onset of mitosis was suggested by this reversal pattern. Meristems treated with DAP contained almost no nuclei with intermediate amounts of DNA, indicating that DAP prevented the onset of DNA synthesis while allowing that underway to reach completion. The inhibition of DNA synthesis was reversed by adenine, adenosine, and desoxyadenosine although synthesis appeared to proceed at a slower rate in reversals than in controls. Inhibition of DNA synthesis by DAP is probably through nucleoside or nucleotide metabolism. A small general depression of DNA content of nuclei in the reversal treatments was observed. This deviation from DNA "constancy" cannot be adequately explained at present although it may be a result of direct incorporation of DAP into DNA. The possible purine precursor, 4-amino-5-imidazolecarboxamide gave no reversal of DAP inhibition of cell elongation and cell division and only a slight possible reversal of inhibition of DNA synthesis.  相似文献   

15.
Nitration in neurodegeneration: deciphering the "Hows" "nYs"   总被引:3,自引:0,他引:3  
Reynolds MR  Berry RW  Binder LI 《Biochemistry》2007,46(25):7325-7336
Recent literature has ushered in a new awareness of the diverse post-translational events that can influence protein folding and function. Among these modifications, protein nitration is thought to play a critical role in the onset and progression of several neurodegenerative diseases. While previously considered a late-stage epiphenomenon, nitration of protein tyrosine residues appears to be an early event in the lesions of amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. The advent of highly specific biochemical and immunological detection methods reveals that nitration occurs in vivo with biological selectively and site specificity. In fact, nitration of only a single Tyr residue is often sufficient to induce profound changes in the activity of catalytic proteins and the three-dimensional conformation of structural proteins. Presumably, nitration modifies protein function by altering the hydrophobicity, hydrogen bonding, and electrostatic properties within the targeted protein. Most importantly, however, nitrative injury may represent a unifying mechanism that explains how genetic and environmental causes of neurological disease manifest a singular phenotype. In this review and synthesis, we first examine the pathways of protein nitration in biological systems and the factors that influence site-directed nitration. Subsequently, we turn our attention to the structural implications of site-specific nitration and how it affects the function of several neurodegeneration-related proteins. These proteins include Mn superoxide dismutase and neurofilament light subunit in amyotrophic lateral sclerosis, alpha-synuclein and tyrosine hydroxylase in Parkinson's disease, and tau in Alzheimer's disease.  相似文献   

16.
Dor E  Joel DM  Kapulnik Y  Koltai H  Hershenhorn J 《Planta》2011,234(2):419-427
Strigolactones that are released by plant roots to the rhizosphere are involved in both plant symbiosis with arbuscular mycorrhizal fungi and in plant infection by root parasitic plants. In this paper, we describe the response of various phytopathogenic fungi to the synthetic strigolactone GR24. When GR24 was embedded in the growth medium, it inhibited the growth of the root pathogens Fusarium oxysporum f. sp. melonis, Fusarium solani f. sp. mango, Sclerotinia sclerotiorum and Macrophomina phaseolina, and of the foliar pathogens Alternaria alternata, Colletotrichum acutatum and Botrytis cinerea. In the presence of this synthetic strigolactone, intense branching activity was exhibited by S. sclerotiorum, C. acutatum and F. oxysporum f. sp. melonis. Slightly increased hyphal branching was observed for A. alternata, F. solani f. sp. mango and B. cinerea, whereas suppression of hyphal branching by GR24 was observed in M. phaseolina. These results suggest that strigolactones not only affect mycorrhizal fungi and parasitic plants, but they also have a more general effect on phytopathogenic fungi.  相似文献   

17.
18.
19.
ABSTRACT

Heliolactone is one of the earliest identified non-canonical strigolactones. Its concise synthesis was achieved by employing Knoevenagel-type condensation and semi-reduction of a malonate intermediate as the key steps. This synthesis was performed in a non-stereoselective manner, and thus a racemic and diastereomeric mixture of heliolactone was obtained. The developed synthetic route is fairly concise and straightforward.  相似文献   

20.
Stress caused by soil salinity and soil drought limits cotton productivity in China. To determine the tolerance levels of cotton, we assessed the effects of soil salinity and soil drought on the biochemical characteristics of the roots of two cotton cultivars (CCRI-44, salt-tolerant; Sumian 12, salt-sensitive). Specifically, we analyzed root biomass, fatty acid composition, antioxidative enzyme activity, lipid peroxidation, H+-ATPase and Ca2+-ATPase activities. The cotton root biomass of the two cultivars declined significantly under conditions of soil salinity, soil drought, and the two stressors combined. The antioxidant enzyme activity of the roots also decreased markedly, which caused lipid peroxidation to increase, and changed the composition of the fatty acid membrane. H+-ATPase, Ca2+-ATPase and antioxidant enzyme activity decreased more under the two stressors combined. However, H2O2 content and O2 ? generation increased under the two stressors combined, compared to each stressor separately. Overall, the combination of soil salinity and drought has a greater inhibitory effect and more harmful impact on root growth than each stressor separately. The higher tolerance of CCRI-44 to soil salinity and drought stress than Sumian 12 might be explained by differences in cotton root antioxidative enzyme activity. The lipid peroxidation levels of cotton roots might represent an important biochemical trait for stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号