首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The genes controlling the synthesis of the high-molecular-weight subunits of glutenin on the long arms of chromosomes 1A and IB were mapped to the -gliadin genes on the short arms by analysing the progeny of three test crosses by sodium dodecyl sulphate, polyacrylamide-gel electrophoresis. Only very weak linkages were detected: the percentage recombination ranged from 39% to 47% and as the values did not significantly differ from each other, the data was pooled. A mean recombination of 43% was obtained and the map distance between glutenin and gliadin genes was calculated to be 66 cM. The analysis of three crosses involving telocentric lines revealed that the glutenin subunit genes on chromosomes 1A, IB and ID are tightly linked to the centromere, the mean map distance being 9.0 cM.  相似文献   

2.
Summary The electrophoretic mobilities of the high-molecular-weight (HMW) subunits of glutenin from 7 varieties were compared by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate (SDS). In total, 12 subunits were clearly resolved and they had nominal molecular weights of between 95,000 and 140,000. The chromosomes which control their synthesis were determined using monosomic lines and inter-varietal substitution lines. All subunits were shown to be controlled by the homoeologous group 1 chromosomes. Each variety contains between 3 and 5 HMW subunits; two are under the control of the 1D chromosome, 1 or 2 are controlled by chromosome 1B and 0 or 1 by chromosome 1A. The segregation of two 1D-controlled subunits of similar electrophoretic mobilities were analysed in the F2 progeny of crosses between Chinese Spring and Holdfast. The results suggest that the genes which code for the two proteins are allelic.  相似文献   

3.
Summary The high molecular weight (HMW) subunit composition of glutenin was analysed by sodium dodecyl sulphate, polyacrylamide gel electrophoresis (SDS-PAGE) in the A genome of 497 diploid wheats and in 851 landraces of bread wheat. The material comprised 209 accessions of wild Triticum monococcum ssp. boeoticum from Greece, Turkey, Lebanon, Armenia, Iraq, and Iran; 132 accessions of the primitive domesticate T. monococcum ssp. monococcum from many different germplasm collections; one accession of free-threshing T. monococcum ssp. sinskajae; 155 accessions of wild T. urartu from Lebanon, Turkey, Armenia, Iraq, and Iran; and landraces of T. aestivum, mainly from the Mediterranean area and countries bordering on the Himalayan Mountains. Four novel HMW glutenin sub-units were discovered in the landraces of bread wheat, and the alleles that control them were designated Glu-Ald through Glu-Alg, respectively. The HMW subunits of T. monococcum ssp. boeoticum have a major, x subunit of slow mobility and several, less prominent, y subunits of greater mobility, all of which fall within the mobility range of HMW subunits reported for bread wheat. In T. monococcum ssp. monococcum the range of the banding patterns for HMW subunits was similar to that of ssp. boeoticum. However, two accessions, while containing y subunits were null for x subunits. The single accession of Triticum monococcum ssp. sinskajae had a banding pattern similar to that of most ssp. boeoticum and ssp. monococcum accessions. The HMW subunit banding patterns of T. urartu accessions were distinct from those of T. monococcum. All of them contained one major x and most contained one major y subunit. In the other accessions a y subunit was not expressed. The active genes for y subunits, if transferred to bread wheat, may be useful in improving bread-making quality.  相似文献   

4.
Summary The subunit composition of glutenin was analysed by SDS-polyacrylamide-gel electrophoresis using two varieties of contrasting pedigrees. Maris Widgeon, a variety of good bread-making quality, was shown to contain 2 glutenin subunits not present in Maris Ranger, a much higher yielding variety that is unsuitable for making bread. A third subunit was only found in Maris Ranger glutenin. To determine if any of these subunits are directly related to bread-making quality, 60 randomly-derived F2 progeny from a Maris Widgeon x Maris Ranger cross were analysed for bread-making quality and for glutenin subunit composition. A strong correlation was demonstrated between the presence of one of the two subunits inherited from Maris Widgeon, and quality. This subunit (termed subunit 1 glutenin) had an approx. mol. wt. of 145,000. It was also found in Maris Freeman, a bread-making variety selected from the same cross previously made in 1962. In further crosses involving Maris Widgeon or its descendants, more bread-making varieties have been produced in the last decade at the Plant Breeding Institute, Cambridge and all but one have inherited glutenin subunit 1. The subunit has been traced back through Holdfast to White Fife, a Canadian hard spring wheat of excellent breadmaking quality. Some 67 varieties were screened for the presence of glutenin subunit 1 and it was found in 31% of them. Several unrelated varieties of good bread-making quality did not contain subunit 1 glutenin.  相似文献   

5.
Summary Two high-molecular-weight subunit (HMWS) glutenin genes from the A and B genomes of the hexaploid bread wheat Triticum aestivum L. cv Cheyenne have been isolated and sequenced. Both of these genes are of the high Mr class (x-type) of HMW glutenins, and have not been previously reported. The entire set of six HMW genes from cultivar Cheyenne have now been isolated and characterized. An analysis of the Ax and Bx sequences shows that the Ax sequence is similar to the homoeologous gene from the D genome, while the Bx repeat structure is significantly different. The repetitive region of these proteins can be modelled as a series of interspersed copies of repeat modifs of 6, 9, and 15 amino acid residues. The evolution of these genes includes single-base substitutions over the entire coding region, plus insertion/deletions of single or blocks of repeats in the central repetitive domain.  相似文献   

6.
Summary Subunits of wheat endosperm proteins have been fractionated by two-dimensional electrophoresis. To determine which subunits in the two-dimensional electrophoretic pattern belong to gliadin or glutenin the endosperm proteins have also been fractionated by a modified Osborne procedure and by gel filtration on Sephadex G-100 and Sepharose CL-4B prior to separation by two-dimensional electrophoresis.The control of production of five major grain protein subunits is shown to be determined by chromosomes 6A, 6B and 6D by comparing two-dimensional electrophoretic protein subunit patterns of aneuploid lines of the variety Chinese Spring. From these and previous studies it is concluded that some , and gliadins (molecular weights by SDS-PAGE 30,000 to 40,000) are specified by genes on the short arms of homoeologous Group 6 chromosomes, the gliadins (molecular weights by SDS-PAGE 50,000 to 70,000) are specified by genes on the short arms of homoeologous Group 1 chromosomes and the glutenin subunits (molecular weights by SDS-PAGE > 85,000) are specified by genes on the long arms of homoeologous Group 1 chromosomes.No major gliadins or glutenin subunits were absent when any of the chromosomes in homoeologous Groups 2, 3, 4, 5 or 7 were deleted. However two gliadins whose presumed structural genes are on chromosome 6D were absent in aneuploid stocks of Chinese Spring carrying two additional doses of chromosome 2A. Two out of thirty-three intervarietal or interspecific chromosome substitution lines examined, involving homoeologous Group 2 chromosomes, lacked the same two gliadins. All the subunits in the other thirty-one chromosome substitution lines were indistinguishable from those in Chinese Spring. It is therefore concluded that the major variation affecting gliadin and glutenins in wheat is concentrated on the chromosomes of homoeologous Groups 1 and 6 but Group 2 chromosomes are candidates for further study.An endosperm protein controlled by chromosome 4D in Chinese Spring is shown to be a high molecular weight globulin.  相似文献   

7.
Inheritance of glutenin protein subunits of wheat   总被引:8,自引:0,他引:8  
Summary The inheritance of the high-molecular-weight (HMW) glutenin protein subunits in hexaploid wheat has been investigated by using sodium dodecyl sulphate-polyacrylamide gel electrophoresis to examine the segregation of these subunits in 496 test-cross seeds. The parents of the f1 hybrid were chosen so that the test-cross seeds segregated for all the HMW glutenin bands. Two glutenin subunits from one parent, believed to be controlled by genes on chromosome 1D, segregated as alternatives to two glutenin subunits from the other parent, a result that supports the assumption that these subunits are controlled by allelic genes at each of two loci that are very closely linked. Similar results were obtained for glutenin subunits believed to be controlled by chromosome IB, which suggests that these subunits are controlled also by allelic genes at each of two loci that are very closely linked. A single glutenin subunit band, believed to be controlled by chromosome 1A, segregated as an alternative to a single glutenin band from the other parent, except that one seed did not possess either band. It was concluded that these bands are controlled either by allelic genes or by nonallelic genes that are very closely linked.  相似文献   

8.
Summary Glutenin subunits from nullisomic-tetrasomic and ditelocentric lines of the hexaploid wheat variety ‘Chinese Spring’ (CS) and from substitution lines of the durum wheat variety ‘Langdon’ were fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) at 70 °C using a gradient of acetonitrile in the presence of 0.1% trifluoroacetic acid. Nineteen subunits were detected in CS. The presence and amounts of four early-eluted subunits were found, through aneuploid analysis, to be controlled by the long arms of chromosomes 1D (1DL) (peaks 1–2) and 1B (1BL) (peaks 3–4). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that these four subunits are the high molecular weight subunits of glutenin, which elute in the order 1Dy, 1Dx, 1By, and 1Bx. Similar amounts of 1DL subunits were present (6.3 and 8.8% of total glutenin), but 1BL subunits differed more in abundance (5.4 and 9.5%, respectively). Results indicate that most late-eluting CS glutenin subunits were coded by structural genes on the short arms of homoeologous group 1 chromosomes: 6 by 1DS, 5 by 1AS, and 4 by 1BS. Glutenin of tetraploid ‘Langdon’ durum wheat separated into nine major subunits: 6 were coded by genes on 1B chromosomes, and 3 on 1A chromosomes. Gene locations for glutenin subunits in the tetraploid durum varieties ‘Edmore’ and ‘Kharkovskaya-5’ are also given. These results should make RP-HPLC a powerful tool for qualitative and quantitative genetic studies of wheat glutenin. The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned Stationed at the Northern Regional Research Center, Peoria.  相似文献   

9.
Summary The high-molecular-weight glutenin subunits (HMW glutenin), encoded by alleles at homoeologous lociGlu-A1,Glu-B1, andGlu-D1 on the long arms of chromosomes1A,1B, and1D of a set of F8 random recombinant inbred lines (RIL) derived from the bread wheat cross Anza × Cajeme 71, were classified by SDS-PAGE. Anza has poor breadmaking quality and HMW-glutenin subunits (Payne numbers) null (Glu-A1c), 7+8 (Glu-B1b), and 2+12 (Glu-D1a); Cajeme 71 has good quality and 1 (Glu-A1a), 17+18 (Glu-B1i), and 5+10 (Glu-D1d). The combinations of these alleles in the RIL were examined for associations with grain yield and four indicators of grain quality — protein content, yellowberry, pearling index, and SDS sedimentation volume. Data were obtained from a field experiment with three nitrogen fertilization treatments on 48 RIL and the parents. Orthogonal partitioning of the genetic variance associated with the three HMW glutenin subunit loci into additive and epistatic (digenic and trigenic) effects showed strong associations of these loci with grain yield and the indicators of quality; however, the associations accounted for no more than 25% of the differences between the parents. Genetic variance was detected among the RIL, which had the same HMW glutenin genotype for all traits. Epistatic effects were absent for grain yield and yellowberry, but were substantial for grain protein content, pearling index, and SDS sedimentation volume. All three loci had large single-locus additive effects for grain yield, protein, and SDS sedimentation volume. Yellowberry was largely influenced byGlu-B1 andGlu-D1, whereas pearling index was associated withGlu-A1 andGlu-B1. Even though the observed associations-of effects of HMW glutenin loci with the quantitative characters were small relative to the total genetic variability, they are of considerable importance in understanding the genetics of wheat quality, and are useful in the development of new wheat varieties with specific desired characteristics.  相似文献   

10.
Summary Nuclei from Triticum aestivum L. cultivars Penjamo 62 and Siete Cerros 66 were introduced into the cytoplasms of different species of Aegilops and some subspecies (varieties) of T. dicoccoides by backcrossing. The sterile alloplasmic lines obtained were compared with the normal cultivars used as the recurrent pollen parents. According to the cytoplasmic effect, these cytoplasms were subdivided into three main groups. The first group possesses Cu type cytoplasm, the second one possesses M type and the third group includes S, C and G type. Promising male sterile cytoplasms for hybrid wheat production were found in Ae. mutica, Ae. triuncialis and T. dicoccoides var. spontaneovillosum. Based on these results and other information some conjectures were made concerning hybrid wheat breeding and phylogenetic differentiations of the cytoplasm.  相似文献   

11.
Summary The storage proteins of the endosperm of wheat grain which are known to be controlled by genes on the short arms of the homoeologous group 1 chromosomes are (1) the -gliadins, (2) most of the -gliadins, (3) a few -gliadins and (4) the major lowmolecular-weight subunits of glutenin. Several crosses were made between varieties or genetic lines which had contrasting allelic variants for some of these proteins and which were coded by genes on chromosomes 1A or 1B. The progeny were analysed by one or more of several electrophoretic procedures. The results of all the analyses are consistent with the hypothesis that chromosomes 1A and 1B each contain just one, complex locus, named Gli-A 1 and Gli-B 1 respectively, which contain the genes for the -, - and -gliadins and the low-molecular-weight subunits of glutenin.  相似文献   

12.
Summary Several high molecular weight endosperm glutenin subunits, coded by genes located on chromosomes 1A, 1B and 1D of common wheat, Triticum aestivum L. em. Thell., were isolated from excised gel segments and subjected to amino acid analysis and peptide mapping; the latter was carried out following a limited digestion with trypsin, chymotrypsin or Staphylococcus aureus — V8 protease. Generally, all high molecular weight glutenins had a similar amino acid composition but several significant differences were observed in some of them. Both analyses revealed that the structural similarity among the various subunits was related to the homology of the genes coding them: subunits coded by homoalleles, i.e., different alleles of the same gene, were most similar; those coded by homoeoalleles, i.e., alleles of homoeologous genes, were less similar; whereas subunits coded either by alleles of different genes of the same gene cluster, or by nonhomoeoalleles of homoeologous clusters, were the least similar. Several small peptides derived from protease digestion of various subunits had a higher than expected staining intensity indicating that small peptide repeats may be interspersed within the glutenin subunits. The evolutionary course of the high molecular weight glutenins is discussed.  相似文献   

13.
Ta1小麦轮选群体高分子量谷蛋白亚基组成分析   总被引:2,自引:0,他引:2  
利用Ta1小麦 Ms2 创建改良小麦面包品质的优质群体,采用SDS-PAGE法对其2次互交轮回群体C2的HMW-GS组成进行了分析.结果表明:在供试的193个样品中各HMW-GS及其组成模式的频率不尽相同,Glu-A1、Glu-B1和Glu-D1位点上产生频率最高的亚基分别是1、14+15和2+12,各为54.40%、35.75%和60.10%,优质亚基5+10的频率为17.6%; null、14+15、2+12 模式产生频率最高,为13.47%,并有 14+15,5+10 的优质亚基聚合体出现,占5.2%;该群体也产生了亲本不具有的13、16、22亚基及19种新的HMW-GS组成模式.说明利用Ta1小麦轮回选择技术是创造新亚基类型的一个有效途径.  相似文献   

14.
High-molecular-weight (HMW) glutenin subunits are a particular class of wheat endosperm proteins containing a large repetitive domain flanked by two short N- and C-terminal non-repetitive regions. Deletions and insertions within the central repetitive domain has been suggested to be mainly responsible for the length variations observed for this class of proteins. Nucleotide sequence comparison of a number of HMW glutenin genes allowed the identification of small insertions or deletions within the repetitive domain. However, only indirect evidence has been produced which suggests the occurrence of substantial insertions or deletions within this region when a large variation in molecular size is present between different HMW glutenin subunits. This paper represents the first report on the molecular characterization of an unusually large insertion within the repetitive domain of a functional HMW glutenin gene. This gene is located at the Glu-D1 locus of a hexaploid wheat genotype and contains an insertion of 561 base pairs that codes for 187 amino acids corresponding to the repetitive domain of a HMW glutenin subunit encoded at the same locus. The precise location of the insertion has been identified and the molecular processes underlying such mutational events are discussed.  相似文献   

15.
Summary A triple (1AL.1RS/1BL.1RS/1DL.1RS) and three double (1AL.1RS/1BL.1RS, 1AL.1RS/1DL.1RS, 1BL.1RS/1DL.1RS) wheat-rye 1RS translocation stocks were isolated from a segregating population using the Gli-1, Tri-1 and Sec-1 seed proteins as genetic markers. These stocks carried 42 chromosomes and formed the expected multivalents (frequency of 14–25%) at metaphase 1. They gave floret fertility ranging from 40–60%. These stocks were subsequently used to determine the genetic control of low-molecular-weight (LMW) glutenin subunits in Chinese Spring and Gabo by means of two-step one-dimensional SDS-PAGE. All of the B subunits and most of the C subunits of glutenin were shown to be controlled by genes on the short arms of group-1 chromosomes in these wheats. The other C subunits were not controlled by group-1 chromosomes. The triple translocation line served as a suitable third parent in producing test-cross seeds for studying the inheritance of the LMW glutenin subunits and gliadins in wheat cultivars, e.g. Chinese Spring and Orca. The segregation patterns of the LMW glutenin subunits in these cultivars revealed that the subunits were inherited in clusters and that their controlling genes (Glu-3) were tightly linked with those controlling gliadins (Gli-1). The LMW glutenin patterns d, d and e in Orca segregated as alternatives to the patterns a, a and a in Chinese Spring controlled by Glu-A3, Glu-B3 and Glu-D3 loci on chromosome arms 1AS, 1BS and 1DS, respectively, thus indicating that these patterns were controlled by allelic genes at these loci.  相似文献   

16.
小麦高分子量谷蛋白亚基及其基因的研究进展   总被引:14,自引:2,他引:12  
主要介绍了小麦高分子量谷蛋白亚基(HMW-GS)及其基因的研究进展情况,目前,转基因小麦的技术已经逐渐成熟,由于分子生物学领域分子标记技术的迅速发展,尤其是PCR技术的广泛应用,为实现外源优良储藏蛋白基因导入改良品种提供了可能,利用已知小麦品种的基因序列设计引物,从众多的未知小麦品种中扩增出新基因加以研究并做外源优质HMW-GS基因的转入已成为一种趋势。  相似文献   

17.
J. Forde  B. J. Miflin 《Planta》1983,157(6):567-576
The prolamin storage proteins of the wheat endosperm contain a sub-class of high-molecular-weight (HMW) polypeptides which have been implicated in determining breadmaking quality. Membrane-bound polysomes isolated from developing wheat endosperms contain mRNA for these HMW components. Although unfractionated polyadenylated RNA derived from the polysomes did not direct the synthesis of these components in an in-vitro wheat-germ system, it did when incubated with a rabbit reticulocyte lysate system. Identification of the translation products as HMW prolamins was based on their large incorporation of [3H]leucine and [3H]glycine relative to [3H]lysine, their mobility on polyacrylamide-gel electrophoresis and the observation that the changes of mobility in response to change in wheat genotype were the same as those observed for the authentic protein. The mRNA was fractionated by electrophoresis and density-gradient centrifugation. The mRNA for the HMW prolamins was found to have a relative molecular mass of about 1.6·106.Abbreviations HMW high molecular weight - PAGE polyacrylamide-gel electrophoresis - poly(A)+RNA polyadenylated RNA - SDS sodium dodecyl sulphate  相似文献   

18.
Summary Recombinant inbred lines (RILs) derived by single plant descent to F8 from a hybrid of Anza, a low-quality cultivar, and Cajeme 71, a high-quality cultivar, differed in alleles at three high-molecular-weight glutenin (HMW-glu) seed storage protein loci. The 48 RILs were classified by SDS-PAGE for the Anza alleles Glu-Alc (null), Glu-B1b (subunits 7 + 8), and Glu-D1a (subunits 2 + 12) and for Cajeme 71 alleles Glu-A1a (sub-unit 1), Glu-B1I (subunits 17 + 18), and Glu-D1d (subunits 5 + 10). All RILs and parents were grown in a replicated field trial with three levels of nitrogen (N) fertilization. Additive and additive x additive gene effects for the three loci were detected by orthogonal comparisons of means for each of six wheat end-use quality traits. Each HMW-glu genotype was represented by three to ten RILs so that variability among RILs within each HMW-glu genotype could be examined. N effects were consistently small. All traits except flour yield were highly correlated with predictor traits studied earlier. Flour protein content, baking water absorption, dough mixing time, bread loaf volume, and bread loaf crumb score were all correlated, suggesting similar gene control for these traits; however, specific additive locus contributions were evident: B for flour yield; B and D for flour protein; and B for absorption, but differing in sign; all three loci for mixing time, but B was negative; and all three loci were positively associated with loaf volume. Digenic epistatic effects were significant for flour yield (AD), flour protein (AB), and absorption and mixing time (AD, BD). Only flour yield showed a trigenic epistatic effect. Six of seven epistatic effects were negative, thus showing how progress in breeding for high quality may be impeded by interaction of genes which, by themselves, have strong positive additive effects. Considerable genetic variance among RILs within a HMW-glu genotype was detected for all traits, and the summation of effects accounted for a mean of 13% of the parental differences for the six traits examined in this study. Clearly, further resolution of the genetics of wheat quality would be desirable from a plant breeding point of view.  相似文献   

19.
Effect of light on the nucleotide composition of rRNA of wheat seedlings   总被引:1,自引:0,他引:1  
Ilona Rácz  I. Király  D. Lásztily 《Planta》1978,142(3):263-267
Both qualitative and quantitative differences in the minor nucleotide constituents of rRNA from normally grown and from etiolated wheat plants (Triticum aestivum L.) were established. Using different degradation methods and separation techniques the 18S+26S RNA of 8-day-old wheat seedlings grown in the light was found to contain 5-methylcytidine, 3-methylcytidine, 5-methyluridine, 3-methyluridine, 5-carboxymethyluridine, 1-methyladenine, N-methyladenine, 5-hydroxymethylcytidine, O2-methyluridine, O2-methylcytidine, pseudouridine, O2-methylpseudouridine, N2,N2-dimethylguanine, 1-methylguanine, ribothymidine and some unknown minor constituents. On the other hand, there were only a few minor nucleotides in the rRNA of etiolated wheat seedlings. Cycloheximide, a cytoplasmic protein synthesis inhibitor, simulated etiolation in that it reduced the number of minor nucleotides in rRNA, whereas chloramphenicol, a chloroplast protein synthesis inhibitor, had no significant effect on the minor nucleotide content of rRNA. This finding suggests that illumination may cause de novo synthesis of cytoplasmic modifying enzymes leading to the formation of highly modified rRNAs.Abbreviations m6A N6-methyladenine - m1A 1-methyladenine - 5hmc 5-hydroxymethylcytidine - Cm O2-methylcytidine - m5C 5-methylcytidine - m3C 3-methylcytidine - m1G 1-methylguanine - m 2 2 G N2, N2-dimethylguanine - pseudouridine - m O2-methylpseudouridine - Um O2-methyluridine - m3U 3-methyluridine - m5U 5-methyluridine - cm5U 5-carboxymethyluridine - rT ribothymidine - Pur purine - Pyr pyrimidine - RNase ribonuclease - UV ultra violet - p phosphate  相似文献   

20.
Summary A genomic fragment containing the Bx17 high-molecular-weight (HMW) glutenin gene was isolated from a wheat genomic library. The fragment contains a coding region of 2.82kb with 1.98-kb downstream and 12.8-kb upstream flanking regions. The fragment was sequenced and compared with previously published glutenin genes from chromosomes 1A, 1B and 1D using a computer alignment package. The Bx17 gene shows marked similarity to the Bx7 gene sequence. A phenetic tree derived from the alignments is presented. Also shown are restriction fragment length polymorphisms (RFLPs) at the glutenin loci in a set of Australian and international wheat varieties using different regions of the glutenin clone as probes. The RFLPs correlated well with the protein composition in all cultivars analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号