共查询到20条相似文献,搜索用时 0 毫秒
1.
Melatonin in circadian sleep disorders in the blind 总被引:2,自引:0,他引:2
Assessment of sleep patterns in blind people demonstrates a high prevalence of sleep disorders. Our studies have shown that subjects with no conscious light perception (NPL) have a higher occurrence and more severe sleep disorders than those with some degree of light perception (LP). A detailed study of 49 blind individuals showed that those with NPL are likely to have free-running (FR) circadian rhythms (aMT6s, cortisol) including sleep. Non-24-hour (or FR) sleep-wake disorder, characterised by periods of good and bad sleep is a condition that may benefit from melatonin treatment. Melatonin has been administered to NPL subjects with FR circadian rhythms and compared with placebo (or the no-treatment baseline) sleep parameters improved. The results suggest that prior knowledge of the subject's type of circadian rhythm, and timing of treatment in relation to the individual's circadian phase, may improve the efficacy of melatonin. 相似文献
2.
Xu Kun 《Biological Rhythm Research》2019,50(3):490-493
Sleep-wake cycle is the predominant example of circadian rhythms. Melatonin is commonly used to treat insomnia and in additional neurodevelopmental disorders in which sleep disturbance is frequent. In mammals, melatonin receptors are present in the membrane and cell nucleus of many tissues and systems where it exhibits various actions, including the regulation of circadian rhythms. The rhythmic pattern of melatonin secretion is imperative since it endows with vital information to the organism concerning time, which permits for alterations of a number of physiological functions consistent with daily and seasonal variations. Melatonin as well has sleep promoting effects demonstrated in changes in brain activation patterns and tiredness generation. The SCN’s (suprachiasmatic nuclei) function and melatonin production capability turns down with age consequently depriving the brain from an important time cue and sleep regulator. 相似文献
3.
4.
ABSTRACT This review concerns the current knowledge of melatonin and alcohol-related disorders. Chronobiological effects of ethanol are related to melatonin suppression and in relation to inflammation, stress, free radical scavenging, autophagy and cancer risk. It is postulated that both alcohol- and inflammation-induced production of reactive oxygen species (ROS) alters cell membrane properties leading to tissue dysfunction and, subsequent further ROS production. Lysosomal enzymes are often used to assess the relationships between intensified inflammation states caused by alcohol abuse and oxidative stress as well as level of tissue damage estimated by the increased release of cellular enzymes into the extracellular space. Studies have established a link between alcoholism and desynchronosis (circadian disruption). Desynchronosis results from the disorganization of the body’s circadian time structure and is an aspect of the pathology of chronic alcohol intoxication. The inflammatory conditions and the activity of lysosomal enzymes in acute alcohol poisoning or chronic alcohol-dependent diseases are in most cases interrelated. Inflammation can increase the activity of lysosomal enzymes, which can be regarded as a marker of lysosomal dysfunction and abnormal cellular integrity. Studies show alcohol toxicity is modulated by the melatonin (Mel) circadian rhythm. This hormone, produced by the pineal gland, is the main regulator of 24 h (sleep-wake cycle) and seasonal biorhythms. Mel exhibits antioxidant properties and may be useful in the prevention of oxidative stress reactions known to be responsible for alcohol-related diseases. Naturally produced Mel and exogenous sources in food can act in free radical reactions and activate the endogenous defense system. Mel plays an important role in the normalization of the post-stress state by its influence on neurotransmitter systems and the synchronization of circadian rhythms. Acting simultaneously on the neuroendocrine and immune systems, Mel optimizes homeostasis and provides protection against stress. Abbreviations: ROS, reactive oxygen species; Mel, melatonin; SRV, resveratrol; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ANT, arylalkylamine-N-acetyltransferase; EC cells, gastrointestinal enterochromaffin cells; MT1, melatonin high-affinity nanomolecular receptor site; MT2, melatonin low-affinity nanomolecular receptor site; ROR/RZR, orphan nuclear retinoid receptors; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced form of glutathione; GSSG, oxidized form of glutathione; TAC, total antioxidant capacity; ONOO?–, peroxynitrite radical; NCAM, neural cell adhesion molecules; LPO, lipid peroxidation; α-KG, α-ketoglutarate, HIF-1α, Hypoxia-inducible factor 1-α, IL-2, interleukin-2; HPA axis, hypothalamic-pituitary-adrenal axis; Tph1, tryptophan hydroxylase 1; AA-NAT, arylalkylamine-N-acetyltransferase; AS-MT, acetylserotonin O-methyltransferase; NAG, N-acetyl-beta-D-glucosaminidase; HBA1c glycated hemoglobin; LPS, lipopolysaccharide; AAP, alanyl-aminopeptidase; β-GR, β-glucuronidase; β-GD, β-galactosidase; LAP, leucine aminopeptidase. 相似文献
5.
Melatonin rhythms in delayed sleep phase syndrome 总被引:5,自引:0,他引:5
The aim of this study was to compare circadian and sleep characteristics between patients with delayed sleep phase syndrome (DSPS) and healthy controls. The authors studied 8 DSPS patients and 15 normal controls. Serum melatonin concentration was assessed every hour for 24 h under dim light conditions. The sleep phase and the melatonin rhythm in DSPS patients were significantly delayed compared to those in normal controls. Sleep length was significantly greater in DSPS patients compared to that in controls, but the duration of melatonin secretion did not differ between the two groups. The final awakening, relative to melatonin onset, melatonin midpoint, and melatonin offset, was significantly longer in DSPS patients than in controls. By contrast, the timing of sleep onset relative to melatonin rhythm did not differ between the two groups. The authors found a significant positive correlation between sleep phase markers and melatonin phase markers in DSPS. They postulate that a delayed circadian pacemaker may be responsible for delayed sleep phase syndrome. The alteration of phase angle between melatonin rhythm and sleep phase suggested that not only the delay of the circadian clock but also a functional disturbance of the sleep-wake mechanism underlies DSPS. 相似文献
6.
Sleep remains one of the least understood phenomena in biology--even its role in synaptic plasticity remains debatable. Since sleep was recognized to be regulated genetically, intense research has launched on two fronts: the development of model organisms for deciphering the molecular mechanisms of sleep and attempts to identify genetic underpinnings of human sleep disorders. In this Review, we describe how unbiased, high-throughput screens in model organisms are uncovering sleep regulatory mechanisms and how pathways, such as the circadian clock network and specific neurotransmitter signals, have conserved effects on sleep from Drosophila to humans. At the same time, genome-wide association studies (GWAS) have uncovered ~14 loci increasing susceptibility to sleep disorders, such as narcolepsy and restless leg syndrome. To conclude, we discuss how these different strategies will be critical to unambiguously defining the function of sleep. 相似文献
7.
8.
9.
Wahlund B 《Biological signals and receptors》1999,8(1-2):120-125
Altered diurnal secretory patterns, i.e. altered phase and/or amplitude of melatonin have been reported in sleep and affective disorders. The alteration may depend on environmental factors which in vulnerable individuals may cause sleep and/or affective disorders. Early stress in conjunction with development of resistance to corticotropin-releasing hormone may be linked to the low melatonin syndrome in subgroups of depressed patients. Also the seasonal variation in melatonin as well as serotonin may be linked to the seasonal pattern seen in subgroups of affective disorders. Melatonin may be used as a combined marker for proneness to develop affective disorders especially in latent carriers of bipolar disorders. 相似文献
10.
Sleep phenotypes in zebrafish models for genetic neuropsychiatric disorders may bridge the gap between basic and translation research. 相似文献
11.
12.
13.
J R Stradling 《BMJ (Clinical research ed.)》1993,306(6877):573-575
14.
15.
16.
17.
18.
19.
J P Kantelip P Magnin 《Comptes rendus des séances de la Société de biologie et de ses filiales》1989,183(5):387-393
Sleep disorders are becoming a major issue. Insomnia affects a substantial part of the population and may compromise individual quality of life. The principal existing hypnotic drugs, Barbiturates and Benzodiazepines are not safely. They have modes of action which results in the action of common mechanism: facilitating neurotransmission in GABAergic synapses. Stimulation of GABA receptors of the A type opens chloride ion channels which inhibits the ability of neurons to conduct nerve impulse. The clinical effects resulting which induce anticonvulsant, muscle relaxant, anxiolytic, sedative, hypnotic and amnesic effects are discussed. 相似文献
20.