首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
外来树种对本地林业虫害的诱发作用   总被引:2,自引:0,他引:2  
白蜡窄吉丁、萧氏松茎象、光肩星天牛、黄斑星天牛、云斑天牛和桑天牛等林业害虫均为我国本地林业生态系统中的昆虫种类,在北美白蜡树、北美松树和北美黑杨派杨树等外来树种引入和大量栽培之前,一直没有形成严重的危害,以至于白蜡窄吉丁和萧氏松茎象都没有引起人们的关注。这些重要林业害虫在我国的发生都是伴随着敏感外来树种的引进和大量不合理的种植而逐渐严重起来的。本文对外来树种的引进与本地林业虫害的发生之间的关系进行了分析,提出了外来树种的不合理引进可能诱发本地林业新虫害的观点,并对其发生机理以及相应的研究和治理对策进行了讨论。  相似文献   

2.
Forests of western North America are currently experiencing extensive tree mortality from a variety of bark beetle species, and insect outbreaks are projected to increase under warmer, drier climates. Unlike the abrupt biogeochemical changes typical after wildfire and timber harvesting, the outcomes of insect outbreaks are poorly understood. The mountain pine bark beetle (Dendroctonus ponderosae) began to attack lodgepole pine (Pinus contorta) at the Fraser Experimental Forest in 2002 and spread throughout the research area by 2007. We compared streamwater nitrogen (N) from 2003 through 2012 with data from the previous two decades in four watersheds with distinct forest management histories, stand structures, and responses to the beetle outbreak. Watersheds dominated by old-growth had larger trees and lost 85% of overstory pine and 44% of total basal area to bark beetles. In contrast, managed watersheds containing a mixture of second-growth (30–60 year old) and old-growth (250- to 350-year old) had higher density of subcanopy trees, smaller mean tree diameter, and lower bark beetle-induced mortality (~26% of total basal area). Streamwater nitrate concentrations were significantly higher in old-growth watersheds during the outbreak than pre-outbreak levels during snowmelt and base flow seasons. In mixed-age stands, streamwater nitrate concentrations were unaffected by the outbreak. Beetle outbreak elevated inorganic N export 43 and 74% in two old-growth watersheds though the amounts of N released in streamwater were low (0.04 and 0.15 kg N ha?1) relative to atmospheric inputs (<2% of annual N deposition). Increased height, diameter, and foliar N of measured in residual live trees augmented demand for N, far in excess of the change in N export during the outbreak. Reallocation of soil resources released after pine mortality to overstory and understory vegetation helps explain high nutrient retention in watersheds affected by bark beetle outbreaks.  相似文献   

3.
To simulate the effects of forest tent caterpillar (FTC) defoliation on trembling aspen growth and mortality, an artificial defoliation experiment was performed over three years in young aspen stands of northwestern Quebec. Defoliation plots of 15 × 15 m were established on three sites, together with associated control stands of pure trembling aspen. In 2007, root collar diameters were measured and positions of all trees were mapped prior defoliation. Severe FTC defoliation was simulated for three successive years (2007–2009) by manually removing all leaves from all but 7–10% of the trees present in the defoliation plots. Yearly surveys of growth and mortality were conducted until 2010 to evaluate defoliation effects on defoliated as well as surrounding undefoliated trees. In absence of other factors, growth and mortality of trembling aspen decreased and increased, respectively, after defoliation. Our study further revealed that small diameter trees died after one year of artificial defoliation, while larger-diameter trees died after repeated defoliations. Distributions of tree mortality tended to be aggregated at small scales (<5 m), corroborating gap patterns observed in mature stands following FTC outbreaks. This experiment revealed that trembling aspen mortality can be directly attributed solely to defoliation. Repeated defoliations during FTC outbreaks have the potential to profoundly modify stand productivity and structure by reducing tree growth and increasing tree mortality in the absence of predisposing factors.  相似文献   

4.
《植物生态学报》2016,40(9):958
Large scale herbivorous insect outbreaks can cause death of regional forests, and the events are expected to be exacerbated with climate change. Mortality of forest and woodland plants would cause a series of serious consequences, such as decrease in vegetation production, shifts in ecosystem structure and function, and transformation of forest function from a net carbon sink into a net carbon source. There is thus a need to better understand the impact of insects on trees. Defoliation by insect pests mainly reduces photosynthesis (source decrease) and increases carbon consumption (sink increase), and hence causes reduction of nonstructural carbohydrate (NSC). When the reduction in NSC reaches to a certain level, trees would die of carbon starvation. External environment and internal compensatory mechanisms can also positively or negatively influence the process of tree death. At present, the research of carbon starvation is a hotspot because the increase of tree mortality globally with climate change, and carbon starvation is considered as one of the dominating physiological mechanisms for explaining tree death. In this study, we reviewed the definition of carbon starvation, and the relationships between the reduction of NSC induced by defoliation and the growth and death of trees, and the relationships among insect outbreaks, leaf loss and climate change. We also presented the potential directions of future studies on insect-caused defoliation and tree mortality.  相似文献   

5.
大规模虫害爆发可造成区域森林死亡, 近年的气候变化进一步增加了虫害的频度和危害程度。森林和林地植物死亡会导致植被生产力降低, 改变生态系统结构和功能, 使森林由一个净的碳汇转变为一个碳源。因此, 加深虫害对树木危害机制的认识有重要意义。虫害造成的叶损失(虫害叶损失)降低树木光合作用能力, 增加非结构性碳(NSC)消耗, 使得树木体内碳储备降低, NSC降低到一定程度会导致树木因碳饥饿而死亡。外部环境和树木自身的补偿性机制也会对这个过程产生正或负的影响。在近年气候变化背景下, 树木死亡在全球尺度上增多, 重新激起了人们对碳饥饿的重视, 碳饥饿被视为解释树木死亡的主要生理机制之一。该文介绍了碳饥饿的定义, 综述了虫害叶损失减少树木NSC储备与树木生长、死亡的关系, 以及树木虫害和叶损失与气候变化之间的关系, 并对今后的研究进行了展望。  相似文献   

6.
7.
Needle defoliation by diprionid sawflies decreases the increment and timber yield of Scots pine Pinus sylvestris L. The aim of this study was to provide approximate estimates of this decrease and preliminary estimates of the economic value of growth losses and tree mortality. Growth loss after needle damage by Diprion pini (Linnaeus) was studied in western Finland. Increment cores were sampled for radial growth measurements from trees subjected to slight, moderate and heavy defoliation. A literature survey was carried out to estimate radial growth losses after defoliation by Neodiprion sertifer (Geoffroy). Calculations for economic consequences were based on previous estimates and on the ongoing 9th Finnish National Forest Inventory. Moderate defoliation by N. sertifer and D. pini reduced volume growth by 21% and 86% and heavy defoliation by 38% and 94%, respectively. Tree mortality in defoliated stands was recorded as approximately 4% after an outbreak of N. sertifer and 30% after an outbreak of D. pini. The estimated average economic value of the losses due to reduced growth and tree mortality reached $40 ha-1 after a single-year outbreak of N. sertifer and $310 ha-1 in the case of D. pini. These preliminary estimates of economic losses indicate a much higher impact of pine sawflies than those revealed by the few earlier studies in Europe.  相似文献   

8.
Jack pine budworm (Choristoneura pinus pinus Free.) (Lepidoptera: Tortricidae) is a native insect that periodically defoliates areas of jack pine (Pinus banksiana Lamb.) in the subboreal forests of North America east of the Rocky Mountains. Outbreaks of jack pine budworm generally occur at 6- to 12-year intervals and collapse after 2–4 years. Periodicity of outbreaks varies and is associated with site-related factors. Survival of early-instar larvae during spring dispersal is tied to the abundance of pollen cones (microsporangiate strobili), which provide a refuge for larvae until current-year needles expand. Jack pine trees that have been heavily defoliated produce few pollen cones in the following year, often resulting in high mortality of early-stage larvae. A diverse guild of generalist parasitoids attack jack pine budworm, but only a few species account for most mortality in any area. Collapsing jack pine budworm populations are characterized by sharp declines in early instar survival, coupled with an increased rate of parasitism in the late larval and pupal stages. The reciprocal interaction between heavy defoliation and low pollen cone production, and increased parasitism of late-stage larvae or pupae, are consistent with second-order density dependence factors identified in analysis of a long-term population data set. Since the 1950s, several jack pine budworm outbreaks have been roughly synchronous over a large geographic area, suggesting that Moran effect processes, as well as moth dispersal or other factors, may be involved in jack pine budworm dynamics. Although the short duration of outbreaks enables most trees to recover, over time dead trees and top-killed trees accumulate in jack pine stands. Jack pine is well adapted to fire and when fires ignite, the accumulation of dead trees and woody debris often leads to intense wildfires followed by prolific regeneration. The three-way interaction of jack pine, jack pine budworm, and fire ultimately serves to maintain vigorous stands and ensures continued hosts for jack pine budworm. Received: October 1, 1999 / Accepted: September 22, 2000  相似文献   

9.
Abstract. 1. The survival, growth and development of larvae of the pine beauty moth, Panolis flammea (D & S) (Lepidoptera: Noctuidae) were examined as part of a study to determine (i) why damaging outbreaks of this insect in Scotland are frequent on lodgepole pine but do not occur on Scots pine, and (ii) why outbreaks are associated with areas of deep un-flushed peat.
2. Larvae were studied inside predator exclusion cages on mature pine trees in Elchies forest where a major infestation occurred in 1978–79.
3. Surprisingly, larval survival was generally greatest on Scots pine and lowest on lodgepole growing in deep peat. Also, larval growth and development were greater on Scots than lodgepole pine and were unaffected by the type of soil in which the lodgepole pine was growing.
4. Larval performance was generally better on lodgepole pine that had been thinned and received fertilizer.
5. Larval survival was affected by pine shoot stage during egg hatch in one of the two years in which this was examined.
6. Observations on P.flammea pupae were confused by disease, parasitism and probably by differences in weight loss caused by differences in larval development. Parasitism by ichneumonid parasitoids was recorded on Scots pine but not on lodgepole pine.
7. It was concluded that (i) the absence of pine beauty moth outbreaks on Scots pine, and (ii) the occurrence of outbreaks on lodgepole pine growing in deep unflushed peat were not the result of lodgepole pine growing in deep peat being a more suitable host plant than lodgepole pine and Scots pine growing elsewhere. It seems more likely that the observed outbreak behaviour of P.flammea in Scotland is associated with differences in predation and parasitism in plantations of difference host plants and in plantations of lodgepole pine growing in different soils.  相似文献   

10.
Mountain pine beetle outbreaks are responsible for widespread tree mortality in pine forests throughout western North America. Intensive outbreaks result in significant economic loss to the timber industry and massive changes to the forest habitat. Because of the time and space scales involved in a beetle outbreak, mathematical models are needed to study the evolution of an outbreak. In this paper we present a partial differential equation model of the flight phase of the mountain pine beetle which includes chemotactic responses and tree defense. We present a numerical method for integrating this model and use this method to investigate the relationship between emergence rate, forest demographic and patterns of beetle attack. In particular we look at how emergence rate affects the beetles' ability to successfully attack strong trees, which may be an indicator of an epidemic outbreak.  相似文献   

11.
The beech caterpillar, Syntypistis punctatella (Motschulsky) (Lepidoptera: Notodontidae), often causes extensive defoliation of beech forests in Japan. Outbreaks have often occurred synchronously among different areas at intervals of 8–11 years. Synchrony of outbreaks was considered to be caused by synchrony of weather. Populations of this insect exhibit periodical dynamics in both outbreak and nonoutbreak areas. Factors that might influence the population dynamics of the beech caterpillar were classified from the point of view of the natural bioregulation com-plex, which includes a coleopteran predator, Calosoma maximowiczi, avian predators, parasitoids, entomopathogenic fungi, and delayed induced defensive response (DIR) of beech trees. Because such periodic population dynamics are believed to be caused by one or more delayed density-dependent factors, delayed density-dependent mortality has been identified as a likely source of population cycles. The DIR and pathogenic diseases showed a high order of density dependence. An infectious pathogen, Cordyceps militaris, was considered to be the most plausible agent responsible for periodic dynamics of the beech caterpillar population because insect diseases were effective in cases in which the S. punctatella population started to decrease without reaching outbreak densities, but DIR was not. Conspicuous defoliation caused by this insect tends to occur at certain elevations, where forests are composed of pure stands of beech trees. I propose three different hypotheses to explain this phenomenon: the diversity–stability hypothesis, the resource concentration hypothesis, and the altitudinal soil nutrient hypothesis. Received: November 20, 1999 / Accepted: August 3, 2000  相似文献   

12.
Synchronous population fluctuations occur in many species and have large economic impacts, but remain poorly understood. Dispersal, climate and natural enemies have been hypothesized to cause synchronous population fluctuations across large areas. For example, insect herbivores cause extensive forest defoliation and have many natural enemies, such as parasitoids, that may cause landscape‐scale changes in density. Between outbreaks, parasitoid‐caused mortality of hosts/herbivores is high, but it drops substantially during outbreak episodes. Because of their essential role in regulating herbivore populations, we need to include parasitoids in spatial modelling approaches to more effectively manage insect defoliation. However, classic host‐parasitoid population models predict parasitoid density, and parasitoid density is difficult to relate to host‐level observations of parasitoid‐caused mortality. We constructed a novel model to study how parasitoids affect insect outbreaks at the landscape scale. The model represents metacommunity dynamics, in which herbivore regulation, colonisation and extinction are driven by interactions with the forest, primary parasitoids and hyperparasitoids. The model suggests that parasitoid spatial dynamics can produce landscape‐scale outbreaks. Our results propose the testable prediction that hyperparasitoid prevalence should increase just before the onset of an outbreak because of hyperparasitoid overexploitation. If verified empirically, hyperparasitoid distribution could provide a biotic indicator that an outbreak will occur.  相似文献   

13.
The frequently observed forest decline in water‐limited regions may be associated with impaired tree hydraulics, but the precise physiological mechanisms remain poorly understood. We compared hydraulic architecture of Mongolian pine (Pinus sylvestris var. mongolica) trees of different size classes from a plantation and a natural forest site to test whether greater hydraulic limitation with increasing size plays an important role in tree decline observed in the more water‐limited plantation site. We found that trees from plantations overall showed significantly lower stem hydraulic efficiency. More importantly, plantation‐grown trees showed significant declines in stem hydraulic conductivity and hydraulic safety margins as well as syndromes of stronger drought stress with increasing size, whereas no such trends were observed at the natural forest site. Most notably, the leaf to sapwood area ratio (LA/SA) showed a strong linear decline with increasing tree size at the plantation site. Although compensatory adjustments in LA/SA may mitigate the effect of increased water stress in larger trees, they may result in greater risk of carbon imbalance, eventually limiting tree growth at the plantation site. Our results provide a potential mechanistic explanation for the widespread decline of Mongolian pine trees in plantations of Northern China.  相似文献   

14.
Abstract 1 After a 1‐year, extensive pine looper (Bupalus piniaria) outbreak, plots were laid out to study tree susceptibility to attack, and performance of Tomicus piniperda in pine trees suffering from varying levels of defoliation. 2 Tomicus piniperda was the dominating stem‐attacking species among the primary stem colonizers, and 82% of all trees that died had been colonized by T. piniperda. 3 Beetle attacks primarily struck severely defoliated trees, i.e. trees that suffered from 90% to 100% defoliation. 4 Beetle attacks peaked in the second year after cessation of the outbreak, and suppressed trees were both more frequently attacked and more susceptible to beetle attack than intermediate and dominant trees. 5 Trees surviving beetle attacks carried more foliage than trees that did not survive the attacks. 6 A single year of severe defoliation is enough to render pine trees susceptible to secondary pests, such as T. piniperda.  相似文献   

15.
Soils of pine forests in the Bytnica Forestry District, Poland, are poor in nutrients readily accessible to plants. The excessively acidic reaction of the soils, typical for soils under pine forests, unfavourably affects the growth of microorganisms whose numbers are lower than in soils under deciduous and mixed forests. In the pine forests of the studied forestry there were outbreaks of a defoliating insect - pine beauty moth (Panolis flammea L.), which resulted in over 60% defoliation of the trees. The studies were carried out on the area of tree stands subjected to gradation by leaf-eating insects (sprayed and not sprayed) and healthy stand of the same age class (age 60 to 70 years). The studies revealed increased number of soil microorganisms in samples taken from the area affected by pine beauty moth gradation in the case of both unsprayed areas and those sprayed with the pesticide. The occurrence in these soils of larger numbers of ammonifying and denitrifying bacteria points to the presence of conditions favouring the growth of heterotrophic organisms. Changes in the number of actinomycetes and fungi in soils under tree stands subjected to gradation by insects, compared to healthy stands, can be a consequence of a change of environmental conditions (e.g. % content of organic carbon). Soils under defoliated tree stands show higher biochemical activity related to nitrogen cycling in the pine forest ecosystem. This leads to higher availability of organic nitrogen for conversion to inorganic forms of nitrogen, which are utilised by trees. Further changes occurring in soils under forest stands affected by gradation by leaf-eating insects would allow to gain knowledge on the ecological consequences of the use of insecticides in the protection of pine stands against harmful insects, with particular stress on those situations in which pine stands not threatened by complete defoliation are sprayed.  相似文献   

16.
Summary A study of the effects of defoliation by insects on the chemistry of lodgepole pine (Pinus contorta), and on the performance of Panolis flammea (Lepidoptera; Noctuidae) larvae, was carried out in a forest in northwest Scotland I year after a severe outbreak of P. flammea had caused extensive defoliation. Larval weight and survival were not significantly different on trees that had experienced different levels of defoliation in 1986. The nitrogen and tannin content of current and previous years' pine needles was not significantly affected by defoliation (although both were slightly greater in the foliage of defoliated trees). Phosphorus content of young pine foliage was lower (but not significantly lower except on one occasion) on heavily defoliated trees. On all sampling occasions, however, the nitrogen: phosphorus ratio was significantly higher on heavily defoliated trees. There were large differences in monoterpene composition of the previous year's shoots associated with defoliation intensity, but these differences had largely disappeared in the new growth. The results are discussed in relation to other studies on the effects of insect damage on plant chemistry and insect performance and in relation to the abundance of P. flammea in Scotland.  相似文献   

17.
1 In 1996, 7000 ha of pine forests were defoliated by the pine looper Bupalus piniaria in south‐western Sweden. 2 The susceptibility of trees of different defoliation classes (0, 30, 60, 90 and 100% defoliation) to beetle‐vectored blue‐stain fungi was tested in inoculation experiments. Forty and 120‐year‐old Scots pine trees were inoculated with ‘single’, i.e. a few inoculations of Leptographium wingfieldii and Ophiostoma minus, two blue‐stain fungi associated with the pine shoot beetle Tomicus piniperda. The young trees were also ‘mass’ inoculated with L. wingfieldii at a density of 400 inoculation points per m2 over a 60 cm stem belt. 3 Host tree symptoms indicated that only trees with 90–100% defoliation were susceptible to the mass inoculation. 4 Single inoculations did not result in any consistent differences in fungal performance between trees of different defoliation classes, regardless of inoculated species or tree age class. 5 Leptographium wingfieldii produced larger reaction zones than O. minus, and both species produced larger lesions in old than in young trees. 6 As beetle‐induced tree mortality in the study area occurred only in totally defoliated stands, mass inoculations seem to mimic beetle‐attacks fairly well, and thus seem to be a useful tool for assessing host resistance. 7 As even severely defoliated pine trees were quite resistant, host defence reactions in Scots pine seem to be less dependent on carbon allocation than predicted by carbon‐based defence hypotheses.  相似文献   

18.
Abstract. 1. Survival of newly emerged jack pine budworm Choristoneura pinus pinus is related to the density of available pollen cones (microsporangiate strobili) produced by its host tree, jack pine Pinus banksiana. 2. A 7‐year time series of observations from a plot network in Ontario, Canada, compared the propensity of jack pine to produce pollen cones, τ, on trees that were either defoliated or undisturbed by the jack pine budworm. 3. Non‐defoliated jack pine trees have a high propensity to produce pollen cones. More than one‐third of these trees produced pollen cones in every year of the series. Propensity varied significantly among plots and trees. Temporal patterns in propensity were also highly variable but within a plot propensity was often autocorrelated in time. 4. Defoliation by the jack pine budworm was associated with forest plots composed of the oldest and the largest trees and with the fewest trees per hectare. Within a plot, outbreaks lasted 3 or 4 years although individual trees were only defoliated in 1 or 2 years. 5. The propensity to produce pollen cones in jack pine was reduced in the years after defoliation. The most pronounced reductions in propensity occurred where defoliation was most severe. 6. The reduction in propensity to produce pollen cones resulting from previous defoliation, coupled with the dependence of jack pine budworm survival on the availability of pollen cones, induces a lagged, negative feedback between the density of the consumer and that of its resource. 7. The lagged, density‐dependent relationship between jack pine budworm and its jack pine host contributes to oscillatory dynamics of the jack pine budworm. Comparison of the outbreak behaviour of jack pine budworm with that of the closely related eastern spruce budworm C. fumiferana suggests that differences in the strength of the host‐plant interaction may account for differences in the relative frequency of outbreaks in the respective systems.  相似文献   

19.
萧氏松茎象危害与松树松脂量关系研究初报   总被引:6,自引:1,他引:5  
萧氏松茎象HylobitelusxiaoiZhang是近年来暴发性松树害虫 ,主要危害 3种松树 :湿地松 (PinuselliottiiEngelm)、火炬松 (P .taeda)、马尾松 (P .massoniaanaLamb) ,其中以湿地松受害最为严重。为明确萧氏松茎象的危害与松脂流量的关系 ,作者对萧氏松茎象危害前后 3种松树 (湿地松、马尾松、火炬松 )松脂流量变化进行了研究。结果显示 ,在松树受害植株和未受害植株间松脂总流量间存在一定差异 ,其中以马尾松松脂流量变化最大 ,对受害株和未受害株松脂流量t-测验 ,差异达到显著水平 ;而湿地松和火炬松松脂总流量在受害植株和未受害植株间没有显著差异。对上述 3种松树松脂流量随时序动态变化的分析显示 ,松脂流量在 1年中以 5月到 6月之间为松脂流量高峰期 ,此后逐渐下降 ,到 3月中旬以后松脂流量又开始上升。就松脂流量时序动态而言 ,萧氏松茎象为害对马尾松松脂流量影响最大 ,对其它2个松树影响不明显。另外 ,不同松树树种在松脂流量及其时序动态上也存在一定差异 ,其中以马尾松脂流量较高。  相似文献   

20.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号