首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population genomic studies in the wild.  相似文献   

2.
Ultraviolet irradiation of cells can induce a state of genomic instability that can persist for several cell generations after irradiation. However, questions regarding the time course of formation, relative abundance for different types of ultraviolet radiation, and mechanism of induction of delayed mutations remain to be answered. In this paper, we have tried to address these questions using the hypoxanthine phosphoribosyl transferase (HPRT) mutation assay in V79 Chinese hamster cells irradiated with ultraviolet A or B radiation. Delayed HPRT(-) mutations, which are indications of genomic instability, were detected by incubating the cells in medium containing aminopterin, selectively killing HPRT(-) mutants, and then treating the cells with medium containing 6-thioguanine, which selectively killed non-mutant cells. Remarkably, the delayed mutation frequencies found here were much higher than reported previously using a cloning method. Cloning of cells immediately after irradiation prevents contact between individual cell clones. In contrast, with the present method, the cells are in contact and are mixed several times during the experiment. Thus the higher delayed mutation frequency measured by the present method may be explained by a bystander effect. This hypothesis is supported by an experiment with an inhibitor of gap junctional intercellular communication, which reduced the delayed mutation frequency. In conclusion, the results suggest that a bystander effect is involved in ultraviolet-radiation-induced genomic instability and that it may be mediated in part by gap junctional intercellular communication.  相似文献   

3.
Measuring gene flow between malaria parasite populations in different geographic locations can provide strategic information for malaria control interventions. Multiple important questions pertaining to the design of such studies remain unanswered, limiting efforts to operationalize genomic surveillance tools for routine public health use. This report examines the use of population-level summaries of genetic divergence (FST) and relatedness (identity-by-descent) to distinguish levels of gene flow between malaria populations, focused on field-relevant questions about data size, sampling, and interpretability of observations from genomic surveillance studies. To do this, we use P. falciparum whole genome sequence data and simulated sequence data approximating malaria populations evolving under different current and historical epidemiological conditions. We employ mobile-phone associated mobility data to estimate parasite migration rates over different spatial scales and use this to inform our analysis. This analysis underscores the complementary nature of divergence- and relatedness-based metrics for distinguishing gene flow over different temporal and spatial scales and characterizes the data requirements for using these metrics in different contexts. Our results have implications for the design and implementation of malaria genomic surveillance studies.  相似文献   

4.
Vainrub A  Pettitt BM 《Biopolymers》2004,73(5):614-620
We present a theoretical model for typical microarray-based single nucleotide polymorphism (SNP) assay of small genomic DNA amount. We derived the adsorption isotherm expressing the on-array hybridization efficiency in terms of genomic target sequence and concentration, oligonucleotide probe sequence and surface density, hybridization buffer, and temperature. This isotherm correctly describes the surface probe density effects, the sensitivity peak, and the melting temperature depression, and is in accord with published experiments. We discuss optimization of parallel SNP genotyping. Our estimates show that SNP detection at a single temperature in aqueous hybridization buffer is restricted by DNA regions that differ by less than 20% in GC content. We predict that the variety of genotyped SNPs could be substantially extended using an assay design with high probe density and a large fraction of probes hybridized.  相似文献   

5.
Conditional gene targeting, based on Cre-lox or other systems, requires frequent genotyping of transgenic mouse populations and monitoring of tissue-specific Cre recombinatory efficiency. This is currently achieved by Southern analysis from tail- and tissue-derived DNA. Multiplex PCR amplification of the floxed (flanked by loxP sites) genomic region, combined with the PCR detection of the Cre transgene, simplifies this task. Here, we show that complete genotyping of a floxed locus is possible with three appropriately placed primers and that this triplex PCR can be performed simultaneously with a universal PCR assay for the detection of Cre transgenes. Using this approach, we also determined the ratios of recombined versus non-recombined floxed genomic segments in genomic DNA samples. This allowed us to estimate the efficiency of in vivo conditional inactivation from biopsy material and tissue samples that were too small for Southern analysis. As many new conditional knockouts are spatiotemporally restricted, such assays will become increasingly useful. The proposed PCR strategy is flexible and may be adapted to the structural specificities of any target gene.  相似文献   

6.
7.
Using an empirical panel of more than 20 000 single base primer extension (SNP-IT) assays we have developed a set of statistical scores for evaluating and rank ordering various parameters of the SNP-IT reaction to facilitate high-throughput assay primer design with improved likelihood of success. Each score predicts either signal magnitude from primer extension or signal noise caused by mispriming of primers and structure of the PCR product. All scores have been shown to correlate with the success/ failure rate of the SNP-IT reaction, based on analysis of assay results. A logistic regression analysis was applied to combine all scored parameters into one measure predicting the overall success/failure rate of a given SNP marker. Three training sets for different types of SNP-IT reaction, each containing about 22000 SNP markers, were used to assign weights to each score and optimize the prediction of the combined measure. c-Statistics of 0.69, 0.77 and 0.72 were achieved for three training sets. This new statistical prediction can be used to improve primer design for the SNP-IT reaction and evaluate the probability of genotyping success for a given SNP based on analysis of the surrounding genomic sequence.  相似文献   

8.
9.
Next-generation sequencing technologies (NGS) have revolutionized biological research by significantly increasing data generation while simultaneously decreasing the time to data output. For many ecologists and evolutionary biologists, the research opportunities afforded by NGS are substantial; even for taxa lacking genomic resources, large-scale genome-level questions can now be addressed, opening up many new avenues of research. While rapid and massive sequencing afforded by NGS increases the scope and scale of many research objectives, whole genome sequencing is often unwarranted and unnecessarily complex for specific research questions. Recently developed targeted sequence enrichment, coupled with NGS, represents a beneficial strategy for enhancing data generation to answer questions in ecology and evolutionary biology. This marriage of technologies offers researchers a simple method to isolate and analyze a few to hundreds, or even thousands, of genes or genomic regions from few to many samples in a relatively efficient and effective manner. These strategies can be applied to questions at both the infra- and interspecific levels, including those involving parentage, gene flow, divergence, phylogenetics, reticulate evolution, and many more. Here we provide a brief overview of targeted sequence enrichment, and emphasize the power of this technology to increase our ability to address a wide range of questions of interest to ecologists and evolutionary biologists, particularly for those working with taxa for which few genomic resources are available.  相似文献   

10.
The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Because the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical, and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and nonmodel species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.  相似文献   

11.
Surfection: a new platform for transfected cell arrays   总被引:6,自引:2,他引:4       下载免费PDF全文
Efficient high-throughput expression of genes in mammalian cells can facilitate large-scale functional genomic studies. Towards this aim, we developed a simple yet powerful method to deliver genes into cells by cationic polymers on the surface of substrates. Transfection can be achieved by directly contacting nucleic acid–cell mixtures with the cationic substrates, e.g. polyethylenimine/collagen-coated wells. This single-step matrix-surface- mediated transfection method, termed ‘surfection’, can efficiently deliver multiple plasmids into cells and can successfully assay siRNA-mediated gene silencing. This technology represents the easiest method to transfer combinations of genes in large-scale arrays, and is a versatile tool for live-cell imaging and cell-based drug screening.  相似文献   

12.
Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are "canonical triplexes". Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.  相似文献   

13.
The human telomeric G-quadruplex structure is a promising target for the design of cancer drugs. The selectivity of G-quadruplex ligands with respect to duplex genomic DNA is of especial importance. The high selectivity of polyamine conjugated perylene derivatives appears to be regulated by side-chain charge density, as indicated by data from a FRET melting assay and induced CD spectroscopy.  相似文献   

14.
This study shows that the accuracy of the quantification of genomic DNA by the commonly used Hoechst- and PicoGreen-based assays is drastically affected by its degree of fragmentation. Specifically, it was shown that these assays underestimate by 70% the concentration of double-stranded DNA (dsDNA) with sizes less than 23 kb. On the other hand, DNA sizes greater and less than approximately 23 kb are commonly characterized as intact and fragmented genomic DNA, respectively, by the agarose electrophoresis DNA smearing assay and are evaluated only qualitatively by this assay. The need for accurate quantification of fragmented and total genomic DNA, combined with the lack of specific, reliable, and simple quantitative methods, prompted us to develop a Hoechst/PicoGreen-based fluorescent assay that quantifies both types of DNA. This assay addresses these problems, and in its Hoechst and PicoGreen version it accurately quantifies dsDNA as being either intact (>or=23 kb) or fragmented (<23 kb) in concentrations as low as 3 ng ml-1 or 5 pg ml-1 with Hoechst or PicoGreen, respectively, as well as the individual fractions of intact/fragmented DNA existing in any proportions in a total DNA sample in concentrations as low as 10 ng ml-1 or 15 pg ml-1 with Hoechst or PicoGreen, respectively. Because the assay discriminates total genomic DNA in the two size ranges (>or=23 and <23 kb) and quantitates them, it is proposed as the quantitative replacement of the agarose gel electrophoresis genomic DNA smearing assay.  相似文献   

15.

Background  

Advances in automated DNA sequencing technology have greatly increased the scale of genomic and metagenomic studies. An increasingly popular means of increasing project throughput is by multiplexing samples during the sequencing phase. This can be achieved by covalently linking short, unique "barcode" DNA segments to genomic DNA samples, for instance through incorporation of barcode sequences in PCR primers. Although several strategies have been described to insure that barcode sequences are unique and robust to sequencing errors, these have not been integrated into the overall primer design process, thus potentially introducing bias into PCR amplification and/or sequencing steps.  相似文献   

16.
One of the most devastating emerging pathogens of wildlife is the chytrid fungus, Batrachochytrium dendrobatidis (Bd), which affects hundreds of amphibian species around the world. Genomic data from pure Bd cultures have advanced our understanding of Bd phylogenetics, genomic architecture and mechanisms of virulence. However, pure cultures are laborious to obtain and whole‐genome sequencing is comparatively expensive, so relatively few isolates have been genetically characterized. Thus, we still know little about the genetic diversity of Bd in natural systems. The most common noninvasive method of sampling Bd from natural populations is to swab amphibian skin. Hundreds of thousands of swabs have been collected from amphibians around the world, but Bd DNA collected via swabs is often low in quality and/or quantity. In this study, we developed a custom Bd genotyping assay using the Fluidigm Access Array platform to amplify 192 carefully selected regions of the Bd genome. We obtained robust sequence data for pure Bd cultures and field‐collected skin swabs. This new assay has the power to accurately discriminate among the major Bd clades, recovering the basic tree topology previously revealed using whole‐genome data. Additionally, we established a critical value for initial Bd load for swab samples (150 Bd genomic equivalents) above which our assay performs well. By leveraging advances in microfluidic multiplex PCR technology and the globally distributed resource of amphibian swab samples, noninvasive skin swabs can now be used to address critical spatial and temporal questions about Bd and its effects on declining amphibian populations.  相似文献   

17.
Cell division is the process by which a cell creates two genetically identical daughter cells. To maintain genomic integrity, a complex and highly regulated sequence of events ensures that the replicated chromosomes are equally partitioned between the daughter cells. For more than 50 years, strategies designed around small-molecule inhibitors have been critical in advancing our understanding of this essential process. Here we introduce a series of questions on the biology of cell division and illustrate how small molecules have been used to design experiments to address these questions. Because of the highly dynamic nature of cell division, the temporal control over protein function that is possible with small molecules has been particularly valuable in dissecting biological mechanisms.  相似文献   

18.

Background  

The ability to visualize genomic features and design experimental assays that can target specific regions of a genome is essential for modern biology. To assist in these tasks, we present Genomorama, a software program for interactively displaying multiple genomes and identifying potential DNA hybridization sites for assay design.  相似文献   

19.
20.
Here we report proof-of-principle for a microsphere-based genotyping assay that detects single nucleotide polymorphisms (SNPs) directly from human genomic DNA samples. This assay is based on a structure-specific cleavage reaction that achieves single base discrimination with a 5′-nuclease which recognizes a tripartite substrate formed upon hybridization of target DNA with probe and upstream oligonucleotides. The assay is simple with two easy steps: a cleavage reaction, which generates fluorescent signal on microsphere surfaces, followed by flow cytometry analysis of the microspheres. Genomic DNA samples were genotyped for the SNP in the Apolipoprotein E gene at amino acid position 158. The assay successfully scored wild type, heterozygous and homozygous mutants. To our knowledge, this is the first report of a solid-support assay for detection of SNPs directly from genomic DNA without PCR amplification of the target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号