首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
XRCC3 was inactivated in human cells by gene targeting. Consistent with its role in homologous recombination, XRCC3(-/-) cells showed a two-fold sensitivity to DNA cross-linking agents, a mild reduction in sister chromatid exchange, impaired Rad51 focus formation and elevated chromosome aberrations. Furthermore, endoreduplication was increased five- seven-fold in the mutants. The T241M variant of XRCC3 has been associated with an increased cancer risk. Expression of the wild-type cDNA restored this phenotype, while expression of the variant restored the defective recombinational repair, but not the increased endoreduplication. RPA, a protein essential for homologous recombination and DNA replication, is associated with XRCC3 and Rad52. Overexpression of RPA promoted endoreduplication, which was partially complemented by overexpression of the wild-type XRCC3 protein, but not by overexpression of the variant protein. Overexpression of Rad52 prevented endoreduplication in RPA-overexpressing cells, in XRCC3(-/-) cells and in the variant-expressing cells, suggesting that deregulated RPA was responsible for the increased endoreduplication. These observations offer the first genetic evidence for the association between homologous recombination and replication initiation having a role in cancer susceptibility.  相似文献   

2.
The Rad51 protein, a eukaryotic homologue of Escherichia coli RecA, plays a central role in both mitotic and meiotic homologous DNA recombination (HR) in Saccharomyces cerevisiae and is essential for the proliferation of vertebrate cells. Five vertebrate genes, RAD51B, -C, and -D and XRCC2 and -3, are implicated in HR on the basis of their sequence similarity to Rad51 (Rad51 paralogs). We generated mutants deficient in each of these proteins in the chicken B-lymphocyte DT40 cell line and report here the comparison of four new mutants and their complemented derivatives with our previously reported rad51b mutant. The Rad51 paralog mutations all impair HR, as measured by targeted integration and sister chromatid exchange. Remarkably, the mutant cell lines all exhibit very similar phenotypes: spontaneous chromosomal aberrations, high sensitivity to killing by cross-linking agents (mitomycin C and cisplatin), mild sensitivity to gamma rays, and significantly attenuated Rad51 focus formation during recombinational repair after exposure to gamma rays. Moreover, all mutants show partial correction of resistance to DNA damage by overexpression of human Rad51. We conclude that the Rad51 paralogs participate in repair as a functional unit that facilitates the action of Rad51 in HR.  相似文献   

3.
BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5' UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001). Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.  相似文献   

4.
The mechanisms by which DNA interstrand cross-links (ICLs) are repaired in mammalian cells are unclear. Studies in bacteria and yeasts indicate that both nucleotide excision repair (NER) and recombination are required for their removal and that double-strand breaks are produced as repair intermediates in yeast cells. The role of NER and recombination in the repair of ICLs induced by nitrogen mustard (HN2) was investigated using Chinese hamster ovary mutant cell lines. XPF and ERCC1 mutants (defective in genes required for NER and some types of recombination) and XRCC2 and XRCC3 mutants (defective in RAD51-related homologous recombination genes) were highly sensitive to HN2. Cell lines defective in other genes involved in NER (XPB, XPD, and XPG), together with a mutant defective in nonhomologous end joining (XRCC5), showed only mild sensitivity. In agreement with their extreme sensitivity, the XPF and ERCC1 mutants were defective in the incision or "unhooking" step of ICL repair. In contrast, the other mutants defective in NER activities, the XRCC2 and XRCC3 mutants, and the XRCC5 mutant all showed normal unhooking kinetics. Using pulsed-field gel electrophoresis, DNA double-strand breaks (DSBs) were found to be induced following nitrogen mustard treatment. DSB induction and repair were normal in all the NER mutants, including XPF and ERCC1. The XRCC2, XRCC3, and XRCC5 mutants also showed normal induction kinetics. The XRCC2 and XRCC3 homologous recombination mutants were, however, severely impaired in the repair of DSBs. These results define a role for XPF and ERCC1 in the excision of ICLs, but not in the recombinational components of cross-link repair. In addition, homologous recombination but not nonhomologous end joining appears to play an important role in the repair of DSBs resulting from nitrogen mustard treatment.  相似文献   

5.
Homologous recombination is an important mechanism in DNA replication to ensure faithful DNA synthesis and genomic stability. In this study, we investigated the role of XRCC2, a member of the RAD51 paralog family, in cellular recovery from replication arrest via homologous recombination. The protein expression of XRCC2, as well as its binding partner RAD51D, is dramatically increased in S- and G2-phases, suggesting that these proteins function during and after DNA synthesis. XRCC2 mutant irs1 cells exhibit hypersensitivity to hydroxyurea (HU) and are defective in the induction of RAD51 foci after HU treatment. In addition, the HU-induced chromatin association of RAD51 is deficient in irs1 mutant. Interestingly, irs1 cells are only slightly sensitive to thymidine and able to form intact RAD51 foci in S-phase cells arrested with thymidine. Irs1 cells showed increased level of chromatin-bound RAD51 as well as the wild type cells after thymidine treatment. Both HU and thymidine induce gamma-H2AX foci in arrested S-phase nuclei. These results suggest that XRCC2 is involved in repair of HU-induced damage, but not thymidine-induced damage, at the stalled replication forks. Our data suggest that there are at least two sub-pathways in homologous recombination, XRCC2-dependent and -independent, for repair of stalled replication forks and assembly of RAD51 foci following replication arrest in S-phase.  相似文献   

6.
In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.  相似文献   

7.
XRCC2 and XRCC3 proteins are structurally and functionally related to RAD51 which play an important role in the homologous recombination, the process frequently involved in cancer transformation. In our previous work we show that the 135G>C polymorphism (rs1801320) of the RAD51 gene can modify the effect of the Thr241Met polymorphism (rs861539) of the XRCC3 gene. We tested the association between the 135G>C polymorphism of the RAD51 gene, the Thr241Met polymorphism of the XRCC3 gene and the Arg188His polymorphism (rs3218536) of the XRCC2 gene and colorectal cancer risk and clinicopathological parameters. Polymorphisms were evaluated by restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) in 100 patients with invasive adenocarcinoma of the colon and in 100 sex, age and ethnicity matched cancer–free controls. We stratified the patients by genotypes, tumour Duke’s and TNM stage and calculated the linkage of each genotype with each stratum. Carriers of Arg188Arg/Me241tMet, His188His/Thr241Thr and His188His/G135G genotypes had an increased risk of colorectal cancer occurrence (OR 5.70, 95% CI 1.10–29.5; OR 12.4, 95% CI 1.63–94.9; OR 5.88, 95% CI 1.21–28.5, respectively). The C135C genotype decreased the risk of colorectal cancer singly (OR 0.06, 95% CI 0.02–0.22) as well as in combination with other two polymorphisms. TNM and Duke’s staging were not related to any of these polymorphisms. Our results suggest that the 135G>C polymorphism of the RAD51 gene can be an independent marker of colorectal cancer risk. The Thr241Met polymorphism of the XRCC3 gene and the Arg188His polymorphism of the XRCC2 gene can modify the risk of colorectal cancer.  相似文献   

8.
Homologous recombination is key to the maintenance of genome integrity and the creation of genetic diversity. At the mechanistic level, recombination involves the invasion of a homologous DNA template by broken DNA ends, repair of the break and exchange of genetic information between the two DNA molecules. Invasion of the template in eukaryotic cells is catalysed by the RAD51 and DMC1 recombinases, assisted by a number of accessory proteins, including the RAD51 paralogues. Eukaryotic genomes encode a variable number of RAD51 paralogues, ranging from two in yeast to five in animals and plants. The RAD51 paralogues form at least two distinct protein complexes, believed to play roles in the assembly and stabilization of the RAD51‐DNA nucleofilament. Somatic recombination assays and immunocytology confirm that the three ‘non‐meiotic’ paralogues of Arabidopsis, RAD51B, RAD51D and XRCC2, are involved in somatic homologous recombination, and that they are not required for the formation of radioinduced RAD51 foci. Given the presence of all five proteins in meiotic cells, the apparent absence of a meiotic role for RAD51B, RAD51D and XRCC2 is surprising, and perhaps simply the result of a more subtle meiotic phenotype in the mutants. Analysis of meiotic recombination confirms this, showing that the absence of XRCC2, and to a lesser extent RAD51B, but not RAD51D, increases rates of meiotic crossing over. The roles of RAD51B and XRCC2 in recombination are thus not limited to mitotic cells.  相似文献   

9.
Histone H1 variant, H1R is involved in DNA damage response   总被引:2,自引:0,他引:2  
In Saccharomyces cerevisiae, the linker histone HHO1 is involved in DNA repair. In higher eukaryotes, multiple variants of linker histone H1 exist but their involvement in the DNA damage response is unknown. To address this issue, we examined sensitivity to genotoxic agents in chicken DT40 cells lacking specific H1 variants. Among the six H1 variant mutants, only H1R(-/-) DT40 cells exhibited increased sensitivity to the alkylating agent methyl-methanesulfonate (MMS). The MMS sensitivity of H1R(-/-) cells was not enhanced by inactivation of Rad54. H1R(-/-) DT40 cells also exhibited: (i) a reduction in gene targeting efficiencies, (ii) impaired sister chromatid exchange, and (iii) an accumulation of IR-induced chromosomal aberrations at the G2 phase, all of which indicate the involvement of H1R in the Rad54-mediated homologous recombination (HR) pathway. The mobility of H1R but not H1L in the nucleus decreased after MMS treatment and the repair of double-stranded breaks generated by I-SceI was unaffected in H1R(-/-) cells, suggesting that H1R integrates into HR-mediated repair pathways at the chromosome structure level. Together, these findings provide the first genetic evidence that a specific H1 variant plays a unique and important role in the DNA damage response in vertebrates.  相似文献   

10.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

11.
Yin M  Liao Z  Huang YJ  Liu Z  Yuan X  Gomez D  Wang LE  Wei Q 《PloS one》2011,6(5):e20055
The repair of DNA double-strand breaks (DSBs) is the major mechanism to maintain genomic stability in response to irradiation. We hypothesized that genetic polymorphisms in DSB repair genes may affect clinical outcomes among non-small cell lung cancer (NSCLC) patients treated with definitive radio(chemo)therapy. We genotyped six potentially functional single nucleotide polymorphisms (SNPs) (i.e., RAD51 −135G>C/rs1801320 and −172G>T/rs1801321, XRCC2 4234G>C/rs3218384 and R188H/rs3218536 G>A, XRCC3 T241M/rs861539 and NBN E185Q/rs1805794) and estimated their associations with overall survival (OS) and radiation pneumonitis (RP) in 228 NSCLC patients. We found a predictive role of RAD51 −135G>C SNP in RP development (adjusted hazard ratio [HR] = 0.52, 95% confidence interval [CI], 0.31–0.86, P = 0.010 for CG/CC vs. GG). We also found that RAD51 −135G>C and XRCC2 R188H SNPs were independent prognostic factors for overall survival (adjusted HR = 1.70, 95% CI, 1.14–2.62, P = 0.009 for CG/CC vs. GG; and adjusted HR = 1.70; 95% CI, 1.02–2.85, P = 0.043 for AG vs. GG, respectively) and that the SNP-survival association was most pronounced in the presence of RP. Our study suggests that HR genetic polymorphisms, particularly RAD51 −135G>C, may influence overall survival and radiation pneumonitis in NSCLC patients treated with definitive radio(chemo)therapy. Large studies are needed to confirm our findings.  相似文献   

12.
Synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA) are the two main homologous recombination (HR) pathways in double‐strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss‐of‐function mutants of rad51 paralogs show increased sensitivity to the DSB‐inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K‐like kinases in wild‐type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K‐like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog‐dependent somatic HR.  相似文献   

13.
One of the earliest events in the signal transduction cascade that initiates a DNA damage checkpoint is the phosphorylation on serine 139 of histone H2AX (gammaH2AX) at DNA double-strand breaks (DSBs). However, the role of gammaH2AX in DNA repair is poorly understood. To address this question, we generated chicken DT40 cells carrying a serine to alanine mutation at position 139 of H2AX (H2AX(-/S139A)) and examined their DNA repair capacity. H2AX(-/S139A) cells exhibited defective homologous recombinational repair (HR) as manifested by delayed Rad51 focus formation following ionizing radiation (IR) and hypersensitivity to the topoisomerase I inhibitor, camptothecin (CPT), which causes DSBs at replication blockage. Deletion of the Rad51 paralog gene, XRCC3, also delays Rad51 focus formation. To test the interaction of Xrcc3 and gammaH2AX, we disrupted XRCC3 in H2AX(-/S139A) cells. XRCC3(-/-)/H2AX(-/S139A) mutants were not viable, although this synthetic lethality was reversed by inserting a transgene that conditionally expresses wild-type H2AX. Upon repression of the wild-type H2AX transgene, XRCC3(-/-)/H2AX(-/S139A) cells failed to form Rad51 foci and exhibited markedly increased levels of chromosomal aberrations after CPT treatment. These results indicate that H2AX and XRCC3 act in separate arms of a branched pathway to facilitate Rad51 assembly.  相似文献   

14.
The repair of DNA double-strand breaks by recombination is key to the maintenance of genome integrity in all living organisms. Recombination can however generate mutations and chromosomal rearrangements, making the regulation and the choice of specific pathways of great importance. In addition to end-joining through non-homologous recombination pathways, DNA breaks are repaired by two homology-dependent pathways that can be distinguished by their dependence or not on strand invasion catalysed by the RAD51 recombinase. Working with the plant Arabidopsis thaliana, we present here an unexpected role in recombination for the Arabidopsis RAD51 paralogues XRCC2, RAD51B and RAD51D in the RAD51-independent single-strand annealing pathway. The roles of these proteins are seen in spontaneous and in DSB-induced recombination at a tandem direct repeat recombination tester locus, both of which are unaffected by the absence of RAD51. Individual roles of these proteins are suggested by the strikingly different severities of the phenotypes of the individual mutants, with the xrcc2 mutant being the most affected, and this is confirmed by epistasis analyses using multiple knockouts. Notwithstanding their clearly established importance for RAD51-dependent homologous recombination, XRCC2, RAD51B and RAD51D thus also participate in Single-Strand Annealing recombination.  相似文献   

15.

Aims

XRCC3 and RAD51 are two important members in homologous recombination repair pathway. This study was performed to detect the expressions of these two molecules in breast cancer and explore their correlations with clinicopathological factors.

Methods and Results

Immunohistochemistry was used to detect protein expressions of XRCC3 and RAD51 in 248 cases of breast cancer tissue and 78 cases of adjacent non-cancerous tissue. Data showed that expressions for both XRCC3 and RAD51 were significantly increased in breast cancer. High XRCC3 expression was associated with large tumor size and positive PR and HER2 status, while high RAD51 expression was associated with axillary lymph node metastasis and positive PR and HER2 status. The result of multivariate analysis demonstrated that HER2, PR and RAD51 were significantly association with XRCC3. And besides XRCC3, axillary lymph node metastasis and PR were significantly correlated with RAD51.

Conclusions

XRCC3 and RAD51 were significantly associated with clinicopathological factors and they might play important roles in the development and progress of breast cancer.  相似文献   

16.
Thacker J 《Biochimie》1999,81(1-2):77-85
The role of homologous recombination processes in the repair of severe forms of DNA damage is reviewed, with particular attention to the functions of members of the recA/RAD51 family of genes. In the yeast Saccharomyces cerevisiae, several of the gene products involved in homologous recombination repair (HRR) have been studied in detail, and a picture is beginning to emerge of the repair mechanism for DNA double-strand breaks. Knowledge is fragmentary for other eukaryotic organisms and for other types of DNA damage. In mammalian cells, while it has been known for some years that HRR occurs, the relative importance of the process in repairing DNA damage is unknown and very few of the gene products involved have been identified. Very recently, a number of RAD51-like genes have been identified in mammals, either through cloning genes complementing cell lines sensitive to DNA-damaging agents (XRCC2, XRCC3), or through homology searches (RAD51L1, RAD51L2, RAD51L3). As yet the role of these genes and their possible functions are speculative, although the combination of sequence conservation and gene expression patterns suggest that they function in HRR pathways.  相似文献   

17.
The human XRCC2 gene was recently identified by its ability to complement a hamster cell line, irs1, which is sensitive to DNA-damaging agents and shows genetic instability. The XRCC2 protein is highly conserved in mammalian species and has structural features, including a putative ATP-binding domain (P-loop), consistent with membership of the RecA/RAD51 family of recombination-repair proteins. We show that a hybrid XRCC2-green fluorescent protein, which was found to be functional by complementation, localizes to the nucleus. We have established a functional link between XRCC2 and RAD51 by looking at damage-dependent RAD51 focus formation in the irs1 cell line. Little or no formation of RAD51 foci occurred in irs1. This effect was specific to the loss of XRCC2 because transfection of the gene into irs1 restored normal levels of focus formation. Surprisingly, XRCC2 genes carrying site-specific mutations in P-loop residues were found to be able to complement the XRCC2-deficient irs1 line for a number of different end points. We conclude that XRCC2 is important in the early stages of homologous recombination in mammalian cells to facilitate RAD51-dependent recombination repair but that it does not make use of ATP binding to promote this function.  相似文献   

18.
The contribution of three single nucleotide polymorphisms (SNPs) that substitute amino acids in the X-ray repair cross-complementing gene 1 (XRCC1) protein, Arg194Trp (R194W), Arg280His (R280H), and Arg399Gln (R399Q), to the risk of various types of cancers has been extensively investigated by epidemiological researches. To investigate whether two of these polymorphisms directly influence their repair ability, we established Chinese hamster ovary (CHO) EM9 cell lines transfected with XRCC1(WT), XRCC1(R194W), or XRCC1(R280H) genes and analyzed the DNA repair ability of these cells. The EM9 cells that lack functional XRCC1 proteins exhibit severe sensitivity to methyl methanesulfonate (MMS). Introduction of the human XRCC1(WT) and XRCC1(R194W) gene to EM9 cells restored the MMS sensitivity to the same level as the AA8 cells, a parental cell line. However, introduction of the XRCC1(R280H) gene partially restored the MMS sensitivity, resulting in a 1.7- to 1.9-fold higher sensitivity to MMS compared with XRCC1(WT) and XRCC1(R194W) cells at the LD(50) value. The alkaline comet assay determined diminished base excision repair/single strand break repair (BER/SSBR) efficiency in XRCC1(R280H) cells as observed in EM9 cells. In addition, the amount of intracellular NAD(P)H decreased in XRCC1(R280H) cells after MMS treatment. Indirect immunofluorescence staining of the XRCC1 protein showed an intense increase in the signals and clear foci of XRCC1 in the nuclei of the XRCC1(WT) cells, but a faint increase in the XRCC1(R280H) cells, after MMS exposure. These results suggest that the XRCC1(R280H) variant protein is defective in its efficient localization to a damaged site in the chromosome, thereby reducing the cellular BER/SSBR efficiency.  相似文献   

19.
Role for RAD18 in homologous recombination in DT40 cells   总被引:2,自引:0,他引:2       下载免费PDF全文
RAD18 is an E3 ubiquitin ligase that catalyzes the monoubiquitination of PCNA, a modification central to DNA damage bypass and postreplication repair in both yeast and vertebrates. Although current evidence suggests that homologous recombination provides an essential backup in vertebrate rad18 mutants, we show that in chicken DT40 cells this is not the case and that RAD18 plays a role in the recombination reaction itself. Gene conversion tracts in the immunoglobulin locus of rad18 cells are shorter and are associated with an increased frequency of deletions and duplications. rad18 cells also exhibit reduced efficiency of gene conversion induced by targeted double-strand breaks in a reporter construct. Blocking an early stage of the recombination reaction by disruption of XRCC3 not only suppresses immunoglobulin gene conversion but also prevents the aberrant immunoglobulin gene rearrangements associated with RAD18 deficiency, reverses the elevated sister chromatid exchange of the rad18 mutant, and reduces its sensitivity to DNA damage. Together, these data suggest that homologous recombination is toxic in the absence of RAD18 and show that, in addition to its established role in postreplication repair, RAD18 is also required for the orderly completion of gene conversion.  相似文献   

20.
Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号