首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gonadotropin releasing hormone (GnRH) and its potent analog [D-Ser(tBu)6]des-Gly10-GnRH N-ethylamide elevate pituitary cyclic GMP levels while stimulating gonadotropin release in cultured pituitary cells. Addition of mycophenolic acid to pituitary cell cultures decreased basal and GnRH-induced cGMP production to undetectable levels, but did not reduce basal or GnRH-stimulated luteinizing hormone (LH) release. Elevation of endogenous cGMP levels by sodium nitroprusside, or addition of cGMP or its potent derivatives, was also without effect on basal or GnRH-stimulated LH release. These findings demonstrate that the elevation of intracellular cGMP during GnRH action does not mediate the release of LH by pituitary cells.  相似文献   

2.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

3.
The present experiments were designed to study the interaction between estradiol benzoate (EB) and thyroxine (T4) given in vivo on the responsiveness of pituitary luteinizing hormone (LH) to gonadotropin-releasing hormone (GnRH) and the release of GnRH in vitro. Ovariectomized-thyroidectomized (Ovx-Tx) rats were injected s.c. with saline or T4 (2 micrograms/100 g b.wt), and oil or EB (0.1 microgram) once daily for 40 days following a 2 x 2 factorial design. All animals were then decapitated and blood samples were collected. Anterior pituitaries (APs) were incubated in vitro with and without 0.1 ng GnRH at 37 degrees C for 4 h. Mediobasal hypothalami (MBHs) were excised and then incubated with and without APs from Ovx donor rats. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. The LH level in media containing MBHs and donor APs was used as the index of bioactive GnRH release. In Ovx-Tx rats, T4 injections reduced the serum LH concentration, the pituitary LH response to GnRH, and the bioactive as well as the immunoreactive GnRH release. The serum LH levels and the spontaneous as well as the GnRH-stimulated release of LH in vitro were suppressed in Ovx-Tx rats following administration of EB. By contrast, the serum LH concentration, as well as pituitary LH response to GnRH and GnRH release in vitro, were higher in the group treated with both T4 and EB than in that treated with saline and EB. These results suggest that the differential changes in the LH secretion after thyroidectomy of Ovx versus non-Ovx rats are due to an antagonistic effect between T4 and estrogen on the response of pituitary LH to GnRH, and the release of GnRH.  相似文献   

4.
5.
Episodic GnRH input is necessary for the maintenance of LH and FSH secretion. In the current study we have assessed the requirement of a pulsatile GnRH signal for the regulation of gonadotropin alpha- and beta-subunit gene expression. Using a dispersed rat pituitary perifusion system, GnRH (10 nM) was administered as a continuous infusion vs. hourly pulses. Secretion of free alpha-subunit, LH, and FSH were monitored over 5-min intervals for the entire 12-h treatment period before the responses of alpha, LH beta, and FSH beta mRNAs were assessed. Basal release of all three glycoproteins declined slowly over 6-8 h before reaching a plateau. The cells were responsive to each pulse of GnRH, but continuous GnRH elicited only a brief episode of free alpha-subunit, LH, and FSH release, followed by a return to unstimulated levels. Despite the similar patterns of secretion, differences were observed in the responses of gonadotropin mRNAs to the two modes of GnRH. alpha mRNA increased in response to continuous (1.6-fold) or pulsatile (1.7-fold) GnRH. FSH beta mRNA was suppressed to 48% of the control value after continuous GnRH, but was stimulated over 4-fold by the pulses. LH beta mRNA was unresponsive to either treatment paradigm. We conclude that in vitro 1) alpha mRNA levels are increased in response to GnRH independent of the mode of stimulation; 2) under the conditions studied, LH beta mRNA levels are unresponsive to either mode of GnRH input; and 3) the response of FSH beta mRNA to GnRH is highly dependent on the mode of administration, with levels depressed in response to continuous GnRH, but stimulated by pulsatile GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To determine the direct, chronic actions of progesterone (P4) and estrogen (estradiol, E2) on anterior pituitary synthesis and release of LH, 24 western range ewes underwent hypothalamic-pituitary disconnection (HPD) and ovariectomy (OVX) during the breeding season and were pulsed with exogenous GnRH with or without steroid replacement. Sequential blood samples were collected before infusion of GnRH and on Days 7 and 14 of GnRH infusion. Silastic capsules of P4 and/or E2 were implanted s.c. on Day 7 and remained in place throughout the experiment. Control ewes received only GnRH infusion. Blood sampling was centered around three exogenous GnRH pulses. After the final blood sampling, pituitaries were collected and stored at -70 degrees C. Concentrations of LH in serum and pituitaries were determined by RIA. Relative concentrations of LH subunit mRNAs were determined by Fast Blot analysis. Simultaneous implantation of P4 and E2 lowered LH pulse amplitude 70% and mean serum levels 30% compared with controls. Neither steroid alone affected LH release. E2 alone or in combination with P4 lowered LH-beta subunit mRNA concentrations 40% compared with controls while alpha-subunit levels were unchanged. Only E2 alone altered the pituitary content of LH, causing a 60% decrease. We conclude that the combination of P4 and E2 is necessary for inhibition of GnRH-stimulated LH secretion. E2 inhibits GnRH-stimulated LH-beta subunit mRNA concentrations but does not affect alpha-subunit mRNA concentrations. The control of pituitary LH content by P4 and E2 is the result of changes in both LH-beta subunit mRNA concentrations and LH secretion.  相似文献   

7.
We investigated the mechanism of estradiol-17beta (E2) action on stimulation of LH (=gonadotropin II) release in the black porgy fish (Acanthopagrus schlegeli Bleeker) using an in vivo approach and primary cultures of dispersed pituitary cells in vitro. In vivo, E2 but not androgens (testosterone [T] and 11-ketotestosterone [11-KT]) significantly stimulated plasma LH in a dose-dependent manner. Estradiol-17beta also increased brain content of seabream GnRH. GnRH antagonist prevented E2 stimulation of LH release in vivo, indicating that the effect of E2 on LH was mediated by GnRH. In vitro, sex steroids (E2, T, 11-KT) alone had no effect on basal LH release in the cultured pituitary cells, but GnRH significantly stimulated LH release. Estradiol-17beta potentiated GnRH stimulation of LH release, an effect that was inhibited by GnRH antagonist, and 11-KT, but not T, also potentiated GnRH stimulation of LH release. The potentiating effect of 11-KT on GnRH-induced LH release in vitro was stronger than that of E2. These data suggest that E2 triggers LH release in vivo by acting both on GnRH production at the hypothalamus and on GnRH action at the pituitary. In contrast, 11-KT may only stimulate GnRH action at the pituitary. The E2) induction of LH release, through multiple interactions with GnRH control, supports a possible central role of E2in the sex change observed in the protandrous black porgy.  相似文献   

8.
Galanin is a 29-amino-acid peptide that colocalizes with GnRH in hypothalamic neurons. High concentrations of galanin are present in portal vessel blood of both male and female rats, and galanin receptors are present on gonadotropes in both sexes. Results from studies of female rats indicate that galanin acts at the level of the pituitary to directly stimulate LH secretion and also to enhance GnRH-stimulated LH secretion. The effects of galanin on pituitary LH secretion in male rats are relatively uncharacterized; thus, the present in vivo study was conducted 1). to examine the ability of galanin to affect basal or GnRH-stimulated LH secretion in male rats and 2). to determine whether the effects of galanin on LH secretion in male rats are testosterone-dependent. All three doses of galanin used (1, 5, and 10 micro g/pulse) significantly enhanced GnRH-stimulated LH secretion in intact male rats. Only the highest dose of galanin directly stimulated LH secretion (without GnRH coadministration) in intact males. Galanin did not directly stimulate LH secretion or enhance GnRH-stimulated LH secretion in castrated male rats. In fact, the highest dose of galanin inhibited GnRH-stimulated LH secretion in castrated males. Upon testosterone replacement, the ability of galanin to directly stimulate LH secretion and to enhance GnRH-stimulated LH secretion was restored in castrated males. These results suggest a role for galanin in the regulation of LH release in male rats and demonstrate that testosterone upregulates the ability of the pituitary to respond to the stimulatory effects of galanin.  相似文献   

9.
Decreased gonadotropin responsiveness (downregulation) to gonadotropin-releasing hormone (GnRH) following chronic in vivo and in vitro exposure to GnRH or its agonist (GnRH-A) has been previously reported. In the present studies, changes in LH subunit mRNAs in rat pituitary monolayer culture during stimulatory and down regulatory phases of GnRH action are described. Rat pituitary cells in culture, pretreated with medium alone or GnRH-A (10(-6) M) for 48 h were extensively washed and treated with graded concentrations of GnRH [10(-9) to 10(-7)] for 4 h. Medium was assayed for luteinizing hormone (LH) immunoreactivity, and total cytoplasmic RNAs were extracted by the hot phenol-guanidinium isothiocyanate method. Subunit-specific mRNAs were quantified by dot-hybridization assay using 32P-labeled subunit-specific cDNA probes. Cells pretreated with medium alone showed a dose-dependent increase in medium LH immunoreactivity, but the alpha and LH beta mRNAs showed no change over the 4-h period. Cells pretreated with GnRH-A showed no significant increase in medium LH with GnRH treatment, thus demonstrating that the cells had been desensitized by prior GnRH-A treatment. Alpha and LH beta subunit mRNAs of cells pretreated with GnRH-A did not show any significant change with further GnRH treatment. In subsequent experiments, cells were incubated with medium alone or 10(-7) M GnRH for 4, 8, or 24 h. GnRH failed to increase subunit mRNAs after 4 and 8 h incubation; after 24 h, alpha subunit mRNA showed a modest but significant increase and beta subunit mRNA showed a modest decrease compared to controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The influence of GnRH pulse frequency on LH subunit mRNA concentrations was examined in castrate, testosterone-replaced male rats. GnRH pulses (25 ng/pulse) or saline to controls, were given via a carotid cannula at intervals of 7.5-240 min for 48 h. alpha and LH beta mRNA concentrations were 109 +/- 23 and 30 +/- 5 pg cDNA bound/100 micrograms pituitary DNA, respectively, in saline controls. GnRH pulse intervals of 15, 30, and 60 min resulted in elevated alpha and LH beta mRNAs (P less than 0.01) and maximum responses (4-fold, alpha; 3-fold, LH beta) were seen after the 30-min pulses. Acute LH release to the last GnRH pulse was seen after the 15-, 30-, and 60-min pulse intervals. In contrast, LH subunit mRNAs were not increased and acute LH release was markedly impaired after the rapid (7.5 min) or slower (120 and 240 min) pulse intervals. Equalization of total GnRH dose/48 h using the 7.5- and 240-min intervals did not increase LH subunit mRNAs to levels produced by the optimal 30-min interval. These data indicate that the frequency of the pulsatile GnRH stimulus regulates expression of alpha and LH beta mRNAs in male rats. Further, GnRH pulse frequencies that increase subunit mRNA concentrations are associated with continuing LH responsiveness to GnRH.  相似文献   

11.
Striped bass are seasonal breeding fish, spawning once a year during the spring. All 3-yr-old males are sexually mature; however, 60-64% of the fish mature earlier as 1- or 2-yr-old animals. The endocrine basis underlying early maturity in 2-yr-old males was studied at the molecular level by monitoring changes in pituitary beta FSH and beta LH mRNA levels by ribonuclease protection assay, and correlating these changes to stages of testicular development. In maturing males, the mRNA levels of beta FSH were elevated during early spermatogenesis, whereas beta LH mRNA levels peaked during spermiation. The appearance of spermatozoa in the testis was associated with a decrease in beta FSH mRNA and a rise in beta LH mRNA abundance. Immature males had lower levels of beta LH mRNA than maturing males, but there were no differences in beta FSH mRNA levels between immature and maturing males. The regulation of gonadotropin gene expression in 2-yr-old males was studied by the chronic administration of GnRH analogue (GnRHa) and testosterone (T), with or without pimozide (P) supplementation. In immature males, the combination of T and GnRHa stimulated a three- to fivefold increase in beta FSH and beta LH mRNA levels, but the same treatment had no effect on gonadotropin gene expression in maturing males. In addition, the coadministration of P to immature males suppressed the stimulatory effect of GnRHa and T on beta FSH and beta LH mRNA levels, suggesting that dopamine may have a novel role in regulating gonadotropin gene expression.  相似文献   

12.
D A Dumesic  M Renk  F Kamel 《Life sciences》1989,44(6):397-406
This study investigated whether phenolsulfonphthalein (PR), a common pH indicator in tissue culture media, affects luteinizing hormone (LH) secretion from rat pituitary cells or 17 beta-estradiol (E2) augmentation of pituitary responsiveness to gonadotropin-releasing hormone (GnRH). PR enhanced GnRH-stimulated LH secretion and shifted the GnRH dose-response curve leftward with a relative potency ratio of 0.24 +/- 0.09 (+/- SE; p less than 0.01). The effect of E2 on LH release was significantly diminished by PR, which elevated GnRH-stimulated LH secretion in the absence of E2. This phenomenon was elicited by PR from different sources and was inhibited by the antiestrogen Cl628. Thus, PR exerted estrogen-like effects on rat pituitary cells and caused an underestimation of the degree to which E2 enhanced GnRH-stimulated LH secretion.  相似文献   

13.
14.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was analyzed in cultured pituitary gonadotrophs during treatment with gonadotropin-releasing hormone (GnRH). In pituitary cells purified by centrifugal elutriation, the extent of protein kinase C redistribution during GnRH stimulation was correlated with the enrichment of gonadotrophs. GnRH-stimulated release of luteinizing hormone (LH) from gonadotroph-enriched cells was accompanied by a rapid and dose-dependent decrease in cytosolic protein kinase C and by a corresponding increase in protein kinase C activity in the particulate fraction. Retinal directly inhibited the activity of cytosolic protein kinase C and also attenuated the release of LH from GnRH-stimulated gonadotrophs. These findings, and the ability of GnRH to cause rapid translocation of cytosolic protein kinase C to a membrane-associated form, suggest that hormonal activation of protein kinase C is an intermediate step in the stimulation of pituitary LH secretion by GnRH.  相似文献   

15.
Crude aqueous extracts of the plant Lithospermum ruderale have been shown to have antigonadotropic activity that resides in its polyphenolic fractions. This study examined the ability of one such polyphenol, lithospermic acid (LA), and its oxidation product(s) (oxyLA) to inhibit luteinizing hormone (LH) secretion in vitro. Primary pituitary cultures were exposed for 4.5 or 6 h to either LA or oxyLA. In the presence of gonadotropin-releasing hormone (GnRH), oxyLA was at least 10 times more potent than LH in inhibiting LH release. In the absence of GnRH, oxyLA but not LA caused an increase in LH release. After washing to remove the oxyLA and LA, cultures were challenged with GnRH. Only cultures pretreated with oxyLA showed a decrease in GnRH-stimulated LH release. These results indicate that oxyLA may contain the primary antigonadotropic agents in L. ruderale. The different responses observed in the presence and absence of GnRH, and the morphologic features of the oxyLA-treated cultures, suggest that the mechanism of action may involve the cell membrane of the gonadotrope.  相似文献   

16.
In African catfish, two gonadotropin-releasing hormone (GnRH) peptides have been identified: chicken GnRH (cGnRH)-II and catfish GnRH (cfGnRH). The GnRH receptors on pituitary cells producing gonadotropic hormone signal through inositol phosphate (IP) elevation followed by increases in intracellular calcium concentration (?Ca(2+)(i)). In primary pituitary cell cultures of male African catfish, both cGnRH-II and cfGnRH dose dependently elevated IP accumulation, ?Ca(2+)(i), and the release of the luteinizing hormone (LH)-like gonadotropin. In all cases, cGnRH-II was more potent than cfGnRH. The GnRH-stimulated LH release was not associated with elevated cAMP levels, and forskolin-induced cAMP elevation had no effect on LH release. With the use of pituitary tissue fragments, however, cAMP was elevated by GnRH, and forskolin was able to stimulate LH secretion. Incubating these fragments with antibodies against cfGnRH abolished the forskolin-induced LH release but did not compromise the forskolin-induced cAMP elevation. This suggests that cfGnRH-containing nerve terminals are present in pituitary tissue fragments and release cfGnRH via cAMP signaling on GnRH stimulation, whereas the GnRH receptors on gonadotrophs use IP/?Ca(2+)(i) to stimulate the release of LH.  相似文献   

17.
Gonadotropin-releasing hormone (GnRH) is an important regulator of reproduction in all vertebrates through its actions on the production and secretion of pituitary gonadotropin hormones (GtHs). Most vertebrate species express at least two GnRHs, including one form, designated chicken (c)GnRH-II or type II GnRH, which has been well conserved throughout evolution. The goldfish brain and pituitary contain salmon GnRH and cGnRH-II. In goldfish, GnRH-induced luteinizing hormone (LH) secretion involves PKC; however, whether PKC mediates GnRH stimulation of GtH subunit mRNA levels is unknown. In this study, we used inhibitors and activators of PKC to examine its possible involvement in GnRH-induced increases in GtH-alpha, follicle-stimulating hormone (FSH)-beta and LH-beta mRNA levels in primary cultures of dispersed goldfish pituitary cells. Treatment with PKC inhibitors calphostin C and GF109203X unmasked a basal repression of GtH subunit mRNA levels by PKC; both inhibitors increased GtH subunit mRNA levels in a dose-dependent manner. PKC activators, 12-O-tetradecanoylphorbol 13-acetate (TPA), and 1,2-dioctanoyl-sn-glycerol, stimulated GtH subunit mRNA levels, whereas an inactive phorbol ester (4-alpha-TPA) was without effect. Thus, a dual, inhibitory and stimulatory, influence for PKC in the regulation of GtH subunit mRNA levels is suggested. In contrast, PKC inhibitor- and activator-induced effects were, for the most part, additive to those of GnRH, suggesting that conventional and novel PKCs are unlikely to be involved in GnRH-stimulated increases in GtH subunit mRNA levels. Our data illustrate major differences in the signal transduction of GnRH effects on GtH secretion and gene expression in the goldfish pituitary.  相似文献   

18.
L V Swanson  S K McCarthy 《Steroids》1986,47(2-3):101-114
A significant dose-response relationship between gonadotropin-releasing hormone (GnRH) and time to luteinizing hormone (LH) peak, peak serum LH and total serum LH was obtained in prepubertal Holstein heifers (28 weeks of age) (Experiment 1). For the second experiment, the effect of steroid feedback on the anterior pituitary was determined. A steady infusion of saline, estradiol-17 beta or progesterone was maintained for 24 h while GnRH, in various schemes, was administered 8 h after the beginning of steroid infusion. Estradiol-17 beta infusion (2.08 micrograms/h), although it did not affect peripheral concentrations of estrogen, caused an LH release 24 to 30 h later in 37.5% of the heifers. This amount of exogenous estrogen did not affect the LH response to a single GnRH (4 micrograms) challenge. When the same GnRH dosage (4 micrograms) was administered 6 times at hourly intervals, the heifers infused with estradiol had a lower response after the first 2 injections of GnRH and a greater response after the last 4 injections than heifers infused with saline. When GnRH was infused (4 micrograms/h) for 6 h, beginning 8 h after steroid infusion, estradiol infusion caused a significantly higher peak LH and total LH release than an infusion of either saline or progesterone (7.3 micrograms/h). The progesterone infusion had no effect on the GnRH-stimulated LH release. We conclude that prepubertal dairy heifers have an anterior pituitary capable of responding to the feedback effect of estrogen in a positive manner.  相似文献   

19.
20.
The relative contributions of arachidonic acid and protein kinase C during GnRH-stimulated LH release were investigated in cultured rat anterior pituitary cells. Maximal or near-maximal concentrations of arachidonic acid or the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, were less effective than a maximal dose of GnRH in stimulating LH release. However, the effect of a combination of arachidonic acid and phorbol ester was equivalent with that of GnRH. The protein kinase C inhibitor, retinal, significantly reduced GnRH- and phorbol-induced, but not arachidonic acid-stimulated, LH release. The lipoxygenase inhibitors, 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid, partially inhibited GnRH- and arachidonic acid-stimulated, but not phorbol-induced, LH secretion. Simultaneous addition of retinal and either lipoxygenase inhibitor completely abolished LH responses elicited by GnRH, as well as by combined treatment with arachidonic acid and the phorbol ester. These results suggest that hormone release is mediated by phospholipid-dependent mechanisms that are coordinated during the stimulation of LH secretion by GnRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号