首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Male fertility is declining and an underlying cause may be due to environment-epigenetic interactions in developing sperm, yet nothing is known of how the epigenome controls gene expression in sperm development. Histone methylation and acetylation are dynamically regulated in spermatogenesis and are sensitive to the environment. Our objectives were to determine how histone H3 methylation and acetylation contribute to the regulation of key genes in spermatogenesis. A germ cell line, GC-1, was exposed to either the control, or the chromatin modifying drugs tranylcypromine (T), an inhibitor of the histone H3 demethylase KDM1 (lysine specific demethylase 1), or trichostatin (TSA), an inhibitor of histone deacetylases, (HDAC). Quantitative PCR (qPCR) was used to identify genes that were sensitive to treatment. As a control for specificity the Myod1 (myogenic differentiation 1) gene was analyzed. Chromatin immunoprecipitation (ChIP) followed by qPCR was used to measure histone H3 methylation and acetylation at the promoters of target genes and the control, Myod1. Remarkably, the chromatin modifying treatment specifically induced the expression of spermatogonia expressed genes Pou5f1 and Gfra1. ChIP-qPCR revealed that induction of gene expression was associated with a gain in gene activating histone H3 methylation and acetylation in Pou5f1 and Gfra1 promoters, whereas CpG DNA methylation was not affected. Our data implicate a critical role for histone H3 methylation and acetylation in the regulation of genes expressed by spermatogonia – here, predominantly mediated by HDAC-containing protein complexes.  相似文献   

3.
The development of myogenic cells is mainly determined by expression of two myogenic factors, Myf5 and Myod1 (MyoD), which genetically compensate for each other during embryogenesis. Here, we demonstrate by conditional cell ablation in mice that Myf5 determines a distinct myogenic cell population, which also contains some Myod1-positive cells. Ablation of this lineage uncovers the presence of a second autonomous myogenic lineage, which superseded Myf5-dependent myogenic cells and expressed Myod1. By contrast, ablation of myogenin-expressing cells erased virtually all differentiated muscle cells, indicating that some aspects of the myogenic program are shared by most skeletal muscle cells. We conclude that Myf5 and Myod1 define different cell lineages with distinct contributions to muscle precursor cells and differentiated myotubes. Individual myogenic cell lineages seem to substitute for each other within the developing embryo.  相似文献   

4.
5.
6.
7.
Differentiation often requires conversion of analogue signals to a stable binary output through positive feedback. Hedgehog (Hh) signalling promotes myogenesis in the vertebrate somite, in part by raising the activity of muscle regulatory factors (MRFs) of the Myod family above a threshold. Hh is known to enhance MRF expression. Here we show that Hh is also essential at a second step that increases Myod protein activity, permitting it to promote Myogenin expression. Hh acts by inducing expression of cdkn1c (p57Kip2) in slow muscle precursor cells, but neither Hh nor Cdkn1c is required for their cell cycle exit. Cdkn1c co-operates with Myod to drive differentiation of several early zebrafish muscle fibre types. Myod in turn up-regulates cdkn1c, thereby providing a positive feedback loop that switches myogenic cells to terminal differentiation.  相似文献   

8.
9.
10.
Proper formation of the musculoskeletal system requires the coordinated development of the muscle, cartilage and tendon lineages arising from the somitic mesoderm. During early somite development, muscle and cartilage emerge from two distinct compartments, the myotome and sclerotome, in response to signals secreted from surrounding tissues. As the somite matures, the tendon lineage is established within the dorsolateral sclerotome, adjacent to and beneath the myotome. We examine interactions between the three lineages by observing tendon development in mouse mutants with genetically disrupted muscle or cartilage development. Through analysis of embryos carrying null mutations in Myf5 and Myod1, hence lacking both muscle progenitors and differentiated muscle, we identify an essential role for the specified myotome in axial tendon development, and suggest that absence of tendon formation in Myf5/Myod1 mutants results from loss of the myotomal FGF proteins, which depend upon Myf5 and Myod1 for their expression, and are required, in turn, for induction of the tendon progenitor markers. Our analysis of Sox5/Sox6 double mutants, in which the chondroprogenitors are unable to differentiate into cartilage, reveals that the two cell fates arising from the sclerotome, axial tendon and cartilage are alternative lineages, and that cartilage differentiation is required to actively repress tendon development in the dorsolateral sclerotome.  相似文献   

11.
12.
13.
14.
Which mechanisms regulate nuclear plasticity? Part of the answer to that question lies in understanding how genes are expressed and regulated in the context of chromatin structure. It is now clear that the genes are regulated in discrete and controlled stages, from packaging into chromatin to their localization within the nucleus. Whereas the genetic information provides the framework for the manufacture of all proteins necessary to create a living cell, chromatin structure controls how, where, and when the genetic information should be used. In this minireview, I summarize the main characteristics of chromatin structure and highlight some of the modifications usually associated with the regulation of gene expression.  相似文献   

15.
Diversity of operation in ATP-dependent chromatin remodelers   总被引:1,自引:0,他引:1  
Chromatin is actively restructured by a group of proteins that belong to the family of ATP-dependent DNA translocases. These chromatin remodelers can assemble, relocate or remove nucleosomes, the fundamental building blocks of chromatin. The family of ATP-dependent chromatin remodelers has many properties in common, but there are also important differences that may account for their varying roles in the cell. Some of the important characteristics of these complexes have begun to be revealed such as their interactions with chromatin and their mechanism of operation. The different domains of chromatin remodelers are discussed in terms of their targets and functional roles in mobilizing nucleosomes. The techniques that have driven these findings are discussed and how these have helped develop the current models for how nucleosomes are remodeled. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号