首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspartate 170 of the D1 polypeptide provides part of the high-affinity binding site for the first Mn(II) ion that is photooxidized during the light-driven assembly of the (Mn)(4) cluster in photosystem II [Campbell, K. A., Force, D. A., Nixon, P. J., Dole, F., Diner, B. A., and Britt, R. D. (2000) J. Am. Chem. Soc. 122, 3754-3761]. However, despite a wealth of data on D1-Asp170 mutants accumulated over the past decade, there is no consensus about whether this residue ligates the assembled (Mn)(4) cluster. To address this issue, we have conducted an EPR and ESEEM (electron spin-echo envelope modulation) study of D1-D170H PSII particles purified from the cyanobacterium Synechocystis sp. PCC 6803. The line shapes of the S(1) and S(2) state multiline EPR signals of D1-D170H PSII particles are unchanged from those of wild-type PSII particles, and the signal amplitudes correlate approximately with the lower O(2) evolving activity of the mutant PSII particles (40-60% compared to that of the wild type). These data provide further evidence that the assembled (Mn)(4) clusters in D1-D170H cells function normally, even though the assembly of the (Mn)(4) cluster is inefficient in this mutant. In the two-pulse frequency domain ESEEM spectrum of the 9.2 GHz S(2) state multiline EPR signal of D1-D170H PSII particles, the histidyl nitrogen modulation observed at 4-5 MHz is unchanged from that of wild-type PSII particles and no significant new modulation is observed. Three scenarios are presented to explain this result. (1) D1-Asp170 ligates the assembled (Mn)(4) cluster, but the hyperfine couplings to the ligating histidyl nitrogen of D1-His170 are too large or anisotropic to be detected by ESEEM analyses conducted at 9.2 GHz. (2) D1-Asp170 ligates the assembled (Mn)(4) cluster, but D1-His170 does not. (3) D1-Asp170 does not ligate the assembled (Mn)(4) cluster.  相似文献   

2.
《BBA》2019,1860(12):148082
Redox titration using fluorescence measurements of photosystem II (PSII) has long shown that impairment of the water-oxidizing Mn4CaO5 cluster upshifts the redox potential (Em) of the primary quinone electron acceptor QA by more than 100 mV, which has been proposed as a photoprotection mechanism of PSII. However, the molecular mechanism of this long-distance interaction between the Mn4CaO5 cluster and QA in PSII remains unresolved. In this study, we reinvestigated the effect of depletion of the Mn4CaO5 cluster on Em(QA/QA) using Fourier transform infrared (FTIR) spectroelectrochemistry, which can directly monitor the redox state of QA at an intended potential. Light-induced FTIR difference measurements at a series of electrode potentials for intact and Mn-depleted PSII preparations from spinach and Thermosynechococcus elongatus showed that depletion of the Mn4CaO5 cluster hardly affected the Em(QA/QA) values. In contrast, fluorescence spectroelectrochemical measurement using the same PSII sample, electrochemical cell, and redox mediators reproduced a large upshift of apparent Em upon Mn depletion, whereas a smaller shift was observed when weaker visible light was used for fluorescence excitation. Thus, the possibility was suggested that the measuring light for fluorescence disturbed the titration curve in Mn-depleted PSII, in contrast to no interference of infrared light with the PSII reactions in FTIR measurements. From these results, it was concluded that the Mn4CaO5 cluster does not directly regulate Em(QA/QA) to control the redox reactions on the electron acceptor side of PSII.  相似文献   

3.
Electron spin echo envelope modulation (ESEEM) spectroscopy in combination with site-directed spin labeling (SDSL) has been established as a valuable biophysical technique to provide site-specific local secondary structure of membrane proteins. This pulsed electron paramagnetic resonance (EPR) method can successfully distinguish between α-helices, β-sheets, and 310-helices by strategically using 2H-labeled amino acids and SDSL. In this study, we have explored the use of 13C-labeled residues as the NMR active nuclei for this approach for the first time. 13C-labeled d5-valine (Val) or 13C-labeled d6-leucine (Leu) were substituted at a specific Val or Leu residue (i), and a nitroxide spin label was positioned 2 or 3 residues away (denoted i-2 and i-3) on the acetylcholine receptor M2δ (AChR M2δ) in a lipid bilayer. The 13C ESEEM peaks in the FT frequency domain data were observed for the i-3 samples, and no 13C peaks were observed in the i-2 samples. The resulting spectra were indicative of the α-helical local secondary structure of AChR M2δ in bicelles. This study provides more versatility and alternative options when using this ESEEM approach to study the more challenging recombinant membrane protein secondary structures.  相似文献   

4.
Shutova T  Irrgang K  Klimov VV  Renger G 《FEBS letters》2000,467(2-3):137-140
This study compares the properties of the extrinsic 33 kDa subunit acting as 'manganese stabilizing protein' (MSP) of the water oxidizing complex with characteristic features of proteins that are known to attain a 'natively unfolded' or a 'molten globule' structure. The analysis leads to the conclusion that the MSP in solution is most likely a 'molten globule' with well defined compact regions of beta structure. The possible role of these structural peculiarities of MSP in solution for its function as important constituent of the WOC is discussed.  相似文献   

5.
The changes observed photosystem I activity of lettuce plants exposed to iron deficiency were investigated. Photooxidation/reduction kinetics of P700 monitored as ΔA820 in the presence and absence of electron transport inhibitors and acceptors demonstrated that deprivation in iron decreased the population of active photo-oxidizable P700. In the complete absence of iron, the addition of plant inhibitors (DCMU and MV) could not recover the full PSI activity owing to the abolition of a part of P700 centers. In leaves with total iron deprivation (0 μM Fe), only 15% of photo-oxidizable P700 remained. In addition, iron deficiency appeared to affect the pool size of NADP+ as shown by the decline in the magnitude of the first phase of the photooxidation kinetics of P700 by FR-light. Concomitantly, chlorophyll content gradually declined with the iron concentration added to culture medium. In addition, pronounced changes were found in chlorophyll fluorescence spectra. Also, the global fluorescence intensity was affected. The above changes led to an increased rate of cyclic electron transport around PSI mainly supported by stromal reductants.  相似文献   

6.
The antenna proteins in photosystem II (PSII) not only promote energy transfer to the photosynthetic reaction center (RC) but provide also an efficient cation sink to re-reduce chlorophyll a if the electron transfer (ET) from the Mn-cluster is inhibited. Using the newest PSII dimer crystal structure (3.0 Å resolution), in which 11 β-carotene molecules (Car) and 14 lipids are visible in the PSII monomer, we calculated the redox potentials (Em) of one-electron oxidation for all Car (Em(Car)) by solving the Poisson-Boltzmann equation. In each PSII monomer, the D1 protein harbors a previously unlocated Car (CarD1) in van der Waals contact with the chlorin ring of ChlZ(D1). Each CarD1 in the PSII dimer complex is located in the interface between the D1 and CP47 subunits, together with another four Car of the other PSII monomer and several lipid molecules. The proximity of Car bridging between CarD1 and plastoquinone/QA may imply a direct charge recombination of Car+QA. The calculated Em(CarD1) and Em(ChlZ(D1)) are, respectively, 83 and 126 mV higher than Em(CarD2) and Em(ChlZ(D2)), which could explain why CarD2+ and ChlZ(D2)+ are observed rather than the corresponding CarD1+ and ChlZ(D1)+.  相似文献   

7.
8.
It has been suggested that the function of the chloroplast-localized small heat shock protein (sHsp) is to protect photosystem II (PSII) from heat inactivation. This paper reports that addition of purified sHsp protein to isolated thylakoid membranes gave no protection of PSII and questions that there is any direct effect of the sHsp on PSII. The opinion is forwarded that the primary role for the chloroplast-localized sHsp may not even be protection of PSII.  相似文献   

9.
《BBA》2002,1554(3):192-201
Properties of the Photosystem II (PSII) complex were examined in the wild-type (control) strain of the cyanobacterium Synechocystis PCC 6803 and its site-directed mutant D1-His252Leu in which the histidine residue 252 of the D1 polypeptide was replaced by leucine. This mutation caused a severe blockage of electron transfer between the PSII electron acceptors QA and QB and largely inhibited PSII oxygen evolving activity. Strong illumination induced formation of a D1-cytochrome b-559 adduct in isolated, detergent-solubilized thylakoid membranes from the control but not the mutant strain. The light-induced generation of the adduct was suppressed after prior modification of thylakoid proteins either with the histidine modifier platinum-terpyridine-chloride or with primary amino group modifiers. Anaerobic conditions and the presence of radical scavengers also inhibited the appearance of the adduct. The data suggest that the D1-cytochrome adduct is the product of a reaction between the oxidized residue His252 of the D1 polypeptide and the N-terminal amino group of the cytochrome α subunit. As the rate of the D1 degradation in the control and mutant strains is similar, formation of the adduct does not seem to represent a required intermediary step in the D1 degradation pathway.  相似文献   

10.
Bukhov NG  Heber U  Wiese C  Shuvalov VA 《Planta》2001,212(5-6):749-758
Dissipation of light energy was studied in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst., and in leaves of Spinacia oleracea L. and Arabidopsis thaliana (L.) Heynh., using chlorophyll fluorescence as an indicator reaction. Maximum chlorophyll fluorescence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated spinach leaves, as produced by saturating light and studied between +5 and −20 °C, revealed an activation energy ΔE of 0.11 eV. As this suggested recombination fluorescence produced by charge recombination between the oxidized primary donor of photosystem II and reduced pheophytin, a mathematical model explaining fluorescence, and based in part on known characteristics of primary electron-transport reactions, was developed. The model permitted analysis of different modes of fluorescence quenching, two localized in the reaction center of photosystem II and one in the light-harvesting system of the antenna complexes. It predicted differences in the relationship between quenching of variable fluorescence F v and quenching of basal, so-called F 0 fluorescence depending on whether quenching originated from antenna complexes or from reaction centers. Such differences were found experimentally, suggesting antenna quenching as the predominant mechanism of dissipation of light energy in the moss Rhytidiadelphus, whereas reaction-center quenching appeared to be important in spinach and Arabidopsis. Both reaction-center and antenna quenching required activation by thylakoid protonation but only antenna quenching depended on or was strongly enhanced by zeaxanthin. De-protonation permitted relaxation of this quenching with half-times below 1 min. More slowly reversible quenching, tentatively identified as so-called q I or photoinhibitory quenching, required protonation but persisted for prolonged times after de-protonation. It appeared to originate in reaction centers. Received: 8 April 2000 / Accepted: 31 August 2000  相似文献   

11.
The dark incubation at room temperature of photosystem II (PS II) membrane fragments in a chloride-free medium at pH 6.3 slowly leads to large chloride-restorable and non-restorable O2 evolution activity losses with time as compared with control samples incubated in the presence of 10 mM NaCl. The chloride requirement in O2 evolution generated under these conditions reveals a complex interplay among various experimental parameters, including the source of the plant material, the times of incubation, the sample concentration, the chloride concentration, as well as those treatments which are believed to specifically displace chloride from PS II such as alkaline pH pretreatment and Na2SO4 addition. The results indicate that secondary, structural changes within the PS II complex are an important factor in determining the influence of chloride on the O2 evolution activity and raise the question whether or not chloride ions actually play a direct cofactor role in the water-oxidizing reactions leading to O2 evolution.Abbreviations Chl chlorophyll - EPR electron paramagnetic resonance - MES 2-(N-morpholino) ethanesulfonic acid - NMR nuclear magnetic resonance - PS II photosystem II  相似文献   

12.
Medio-lateral translation during knee flexion continues to raise controversy. Small population sizes, small joint flexion ranges, less-reliable measurement techniques and disparate experimental conditions led to inconsistent reports in the past. To study this subject with more accurate and reliable measurements, we carried out femur and tibia tracking in 22 intact cadaver knees during passive joint motion using a state-of-the-art surgical navigation system. Trackers with active light-emitting diodes were fixed onto the femur and tibia, and an instrumented pointer was used to digitize a number of anatomical landmarks. International recommendations were adopted for anatomical-based reference frame definitions and joint kinematic analysis. For the first time, knee joint translations were reported in both the femoral and tibial reference frames, and over a flexion/extension arc as large as 140°. During flexion, in the femoral reference frame, the center of the tibial plateau moved 4.8 ± 2.8mm medially when averaged over the specimens. In the tibial frame, the knee center moved 13.3 ± 5.7 mm laterally. The relative femoral-to-tibial medio-lateral translation was, on average over the specimens, nearly 20% of the width of the tibial plateau, and can be as large as 35%. Medio-lateral translation occurs in the natural normal knee joint.  相似文献   

13.
Mice pre-trained in an olfactometer were tested daily on odor detection and discrimination tasks after irrigation of their olfactory epithelium in each naris with 50 microl of 5% zinc sulfate or saline. Anterograde transport of a wheatgerm agglutinin-horseradish peroxidase (WGA-HRP) conjugate from the epithelium to the olfactory bulb was used to assess anatomical connectivity in these and in mice that were used only for histological analyses. One day after treatment, saline controls performed at high levels of accuracy in detecting vapor from solutions of 5-0.01% ethyl acetate and in an odor discrimination task but most ZnSO4-treated mice performed at chance for 5-30 days before showing recovery. Although dense WGA-HRP reaction product was found in the accessory olfactory bulb, there was little or no evidence for axonal transport to glomeruli of the main olfactory bulb in the first 4-8 days after treatment. These results demonstrate that intranasal application of ZnSO4 to mice produces a brief but essentially total disruption of functional connections from the olfactory epithelium to the main olfactory bulb and a corresponding transient anosmia.  相似文献   

14.
15.
Herein, we identify the coordination environment of Cu2+ in the human α1-glycine receptor (GlyR). GlyRs are members of the pentameric ligand-gated ion channel superfamily (pLGIC) that mediate fast signaling at synapses. Metal ions like Zn2+ and Cu2+ significantly modulate the activity of pLGICs, and metal ion coordination is essential for proper physiological postsynaptic inhibition by GlyR in vivo. Zn2+ can either potentiate or inhibit GlyR activity depending on its concentration, while Cu2+ is inhibitory. To better understand the molecular basis of the inhibitory effect we have used electron spin resonance to directly examine Cu2+ coordination and stoichiometry. We show that Cu2+ has one binding site per α1 subunit, and that five Cu2+ can be coordinated per GlyR. Cu2+ binds to E192 and H215 in each subunit of GlyR with a 40 μM apparent dissociation constant, consistent with earlier functional measurements. However, the coordination site does not include several residues of the agonist/antagonist binding site that were previously suggested to have roles in Cu2+ coordination by functional measurements. Intriguingly, the E192/H215 site has been proposed as the potentiating Zn2+ site. The opposing modulatory actions of these cations at a shared binding site highlight the sensitive allosteric nature of GlyR.  相似文献   

16.
17.
A unique electron-accepting analog of vitamin K1 found in photosystem I in several species of oxygenic photosynthetic microorganisms was confirmed to be 5′-hydroxyphylloquinone (1) through stereo-uncontrolled synthesis. Furthermore, the stereochemistry of 1 obtained from Synechococcus sp. PCC 7942 was assigned to be 5′S using proline-catalyzed stereocontrolled reactions.  相似文献   

18.
In the absence of natural selection, average fitness in the population is expected to decline due to the accumulation of deleterious mutations. Replicate populations of flour beetles (Tribolium confusum) were maintained for 22 generations in the virtual absence of selection (random mating, favorable environment, excess of food, and mortality of only 3%). Larva-to-adult survivorship rates were similar in the stock population and selection-free populations. In contrast, starvation resistance of adult beetles from selection-free populations was significantly reduced (by more than 2% per generation). When tested in the favorable environment, beetles in one selection-free population had significantly slower development and smaller sizes of females than beetles from the stock population. Since such changes in these fitness components are usually maladaptive, they indicate possible erosion of fitness under relaxed selection at the rate of 0.1-0.2% per generation. No fitness erosion was detectable in the second selection-free population.  相似文献   

19.
Photosystem II is the oxygen-evolving enzyme of photosynthesis. It is a membrane-bound protein-pigment complex. The oxygen is produced at the oxygen-evolving centre (OEC), a Mn4CaO5 metallocluster, which is largely ligated by amino acids of the D1 protein. The OEC-ligating residues are invariant between most cyanobacteria and higher plants. In this study, a new class of cyanobacterial D1 proteins has been identified in which the OEC metal-ligating residues are very different to the consensus. This new class of ‘rogue’ D1 proteins is associated with diazotrophic cyanobacteria. Their function, activity and origins are discussed.  相似文献   

20.
The active site of photosynthetic water oxidation by Photosystem II (PSII) is a manganese-calcium cluster (Mn(4)CaO(5)). A postulated catalytic base is assumed to be crucial. CP43-Arg357, which is a candidate for the identity of this base, is a second-sphere ligand of the Mn(4)-Ca cluster and is located near a putative proton exit pathway, which begins with residue D1-D61. Transient absorption spectroscopy and time-resolved O(2) polarography reveal that in the D1-D61N mutant, the transfer of an electron from the Mn(4)CaO(5) cluster to Y(Z)(OX) and O(2) release during the final step of the catalytic cycle, the S(3)-S(0) transition, proceed simultaneously but are more dramatically decelerated than previously thought (t(1/2) of up to ~50 ms vs a t(1/2) of 1.5 ms in the wild type). Using a bare platinum electrode to record the flash-dependent yields of O(2) from mutant and wild-type PSII has allowed the observation of the kinetics of release of O(2) from extracted thylakoid membranes at various pH values and in the presence of deuterated water. In the mutant, it was possible to resolve a clear lag phase prior to the appearance of O(2), indicating formation of an intermediate before the onset of O(2) formation. The lag phase and the photochemical miss factor were more sensitive to isotope substitution in the mutant, indicating that proton efflux in the mutant proceeds via an alternative pathway. The results are discussed in comparison with earlier results obtained from the substitution of CP43-Arg357 with lysine and in regard to hypotheses concerning the nature of the final steps in photosynthetic water oxidation. These considerations led to the conclusion that proton expulsion during the initial phase of the S(3)-S(0) transition starts with the deprotonation of the primary catalytic base, probably CP43-Arg357, followed by efficient proton egress involving the carboxyl group of D1-D61 in a process that constitutes the lag phase immediately prior to O(2) formation chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号