首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosaminoglycans were isolated from the skeletal muscle of either normal or dystrophic mice aged from 3 to 18 weeks. The glycosaminoglycan content of the normal muscle, based on the tissue weight, decreased slightly during the period from 3 to 10 weeks, and remained almost unchanged after 10 weeks. The major glycosaminoglycan in normal muscle was hyaluronate, the relative amount of which increased slightly (from 70% to 80%) with age. Both dermatan sulfate and heparan sulfate were also obtained. The relative amounts of these sulfated glycosaminoglycans tended to decrease with age. On the other hand, the glycosaminoglycan content of the dystrophic muscle was higher than that of normal muscle even at 3 weeks. The proportion of hyaluronate was almost constant (about 65%) throughout the age range examined. The relative amount of dermatan sulfate increased from 20% to 30% with a compensatory decrease in the amount of heparan sulfate. Further, the incorporation of [35S]sulfate into glycosaminoglycans by the dystrophic muscle was reduced to about 60% of the normal. These differences in glycosaminoglycan composition and [35S]sulfate incorporation between the normal and the dystrophic muscles may be related to the progressive muscular dysfunction seen in this disease.  相似文献   

2.
At 5, 15, and 45 days following induction of interstitial pulmonary fibrosis by intratracheal administration of bleomycin in hamsters, glycosaminoglycan synthesis was measured, using [35S]sulfate. Total labeled sulfate incorporation into lung glycosaminoglycans was maximally increased over that of saline-instilled controls at 5 days (P less than or equal to 0.05), declined markedly at 15 days, and returned to control values at 45 days. Separation of the various labeled glycosaminoglycans by chondroitinase digestion and chromatography revealed a transient rise from controls (P less than or equal to 0.05) in the proportion of labeled chondroitin 4-sulfate at 5 days, followed by an increase from controls (P less than or equal to 0.05) in proportionate labeling of dermatan sulfate at 15 and 45 days postbleomycin. Autoradiography, using [35S]sulfate, performed at 21 days postbleomycin, revealed an increase from controls in film grain formation in areas of interstitial reaction. Grain formation was greatly reduced by pretreatment of the slide sections with hyaluronidase and chondroitinase, demonstrating the specificity of the label for glycosaminoglycans. The results indicate that glycosaminoglycan synthesis is significantly altered from normal in this model of interstitial lung disease and that dermatan sulfate is preferentially synthesized during the fibrotic phase of the lung reaction.  相似文献   

3.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

4.
Diabetes mellitus was induced in one group of rats by a single injection of streptozotocin. The glycemia, the body weight, and the blood systolic pressure were measured every week, and the 24 h urine volume and urinary excretions of creatinine, albumin and glycosaminoglycans were measured every 2 weeks. At the end of the experiment (12 weeks) the weight and the glycosaminoglycan composition of the kidneys were determined. All the diabetic animals were hyperglycemic, hypertense, and did not gain weight during all the experimental period. Albuminuria appeared from the second week on. Rat urine was shown to contain heparan sulfate, chondroitin sulfate, and dermatan sulfate, and the glycosaminoglycan excretion decreased in all diabetic animals. The onset of the change in glyco-samino-glycan excretion rate was a very early event, appearing in the second week after diabetes induction. The main glycosaminoglycan found in normal rat kidney was heparan sulfate and, in contrast to the urine, the total kidney glycosaminoglycans increased in diabetic kidney, due to chondroitin sulfate and dermatan sulfate accumulation. The heparan sulfate concentration (per tissue dry weight) did not change. Our results suggest that quantification of urinary glycosaminoglycans may be a useful tool for the early diagnosis of diabetic nephropathy.  相似文献   

5.
"Fibroblast-like" cells from the intimal layer of bovine aorta were grown in culture. The formation, composition, molecular weight and turnover rate of different pools of glycosaminoglycans were investigated in cultures incubated in the presence [35S]sulfate or [14C]glucosamine. The newly synthesized glycosaminoglycans are distributed into an extracellular pool (37 - 58%), a cell-membrane associated or pericellular pool (23 - 33%), and an intracellular pool (19 - 30%), each pool exhibiting a characteristic distribution pattern of chondroitin sulfate, dermatan sulfate, heparan sulfate and hyaluronate. The distribution pattern of the extracellular glycosaminoglycans resembles closely that found in bovine aorta. A small subfraction of the pericellular pool - tentatively named "undercellular" pool--has been characterized by its high heparan sulfate content. The intracellular and pericellular [35S]glycosaminoglycan pools reach a constant radioactivity after 8-12 h and 24 h, respectively, whereas the extracellular [35S]glycosaminoglycans are secreted into the medium at a linear rate over a period of at least 6 days. The intracellular glycosaminoglycans are mainly in the process of degradation, as indicated by their low molecular weight and by their half-life of 7 h, but intracellular dermatan sulfate is degraded more rapidly (half-life 4-5 h) than intracellular chondroitin sulfate and heparan sulfate (half-life 7-8 h). Glycosaminoglycans leave the pericellular pool with a half-life of 12-14 h by 2 different routes: about 60% disappear as macromolecules into the culture medium, and the remainder is pinocytosed and degraded to a large extent. Extracellular and at least a part of the pericellular glycosaminoglycans are proteoglycans. Even under dissociative conditions (4M guanidinium chloride) their hydrodynamic volume is sufficient for partial exclusion from Sepharose 4B gel. The existence of topographically distinct glycosaminoglycan pools with varying metabolic characteristics and differing accessibility for degradation requiresa reconsideration and a more reserved interpretation of results concerning the turnover rates of glycosaminoglycans as determined in arterial tissue.  相似文献   

6.
FGF-7 is induced after injury and induces the proliferation of keratinocytes. Like most members of the FGF family, the activity of FGF-7 is strongly influenced by binding to heparin, but this glycosaminoglycan is absent on keratinocyte cell surfaces and minimally present in the wound environment. In this investigation we compared the relative activity of heparan sulfate and chondroitin sulfate B (dermatan sulfate), glycosaminoglycans that are present in wounds. A lymphoid cell line (BaF/KGFR) containing the FGF-7 receptor (FGFR2 IIIb) was treated with FGF-7 and with various glycosaminoglycans. FGF-7 did not support cell proliferation in the absence of glycosaminoglycan or with addition of heparan sulfate or chondroitin sulfate A/C but did stimulate BaF/KGFR division in the presence of dermatan sulfate or highly sulfated low molecular weight fractions of dermatan. Dermatan sulfate also enabled FGF-7-dependent phosphorylation of mitogen-activated protein kinase and promoted binding of radiolabeled FGF-7 to FGFR2 IIIb. In addition, dermatan sulfate and FGF-7 stimulated growth of normal keratinocytes in culture. Thus, dermatan sulfate, the predominant glycosaminoglycan in skin, is the principle cofactor for FGF-7.  相似文献   

7.
Glycosaminoglycan content, composition and molecular weight distribution were determined in cerebral gray and white matter, liver and spleen from normals and 7 patients with mucopolysaccharidosis; 4 were of Type I (Hurler), one Type II (Hunter), one Type IIIA (Sanfilippo A) and one Type V (Scheie). There was a 3 to 4-fold increase in glycosaminoglycan content of the brains from patients with mucopolysaccharidosis Type I, II and IIIA, but only a 40% increase in the Type V patient. Partially degraded dermatan sulfate accounted for most of the increase in Types I, II and V. Highly fragmented heparan sulfate was the major glycosaminoglycan in the brain of the Type IIIA patient and was also a sizable component in Types I and II. Remarkably, the changes in the brain glycosaminoglycans of the Type V patient were minimal. He also was of normal intelligence  相似文献   

8.
The glycosaminoglycan content in pus from patients with purulent pleurisy was studied. The uronic acid content rose in the first 4 hospital days, continued at a high level during hospital days 5-8, and then fell to a low level after 9 hospital days. Four glycosaminoglycans were isolated from the preparation; they were identified as hyaluronic acid, chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate. Hyaluronic acid was the main component and its relative proportion increased with increasing hospital days. The relative proportions of chondroitin 4-sulfate and chondroitin 6-sulfate were low during the first 4 day and during Days 10-21, whereas they were high during Days 5-9. The proportion of dermatan sulfate was high during the early hospital days, and thereafter decreased with increasing hospital days.  相似文献   

9.
Glycosaminoglycan synthesis was studied in explant cultures of hamster lungs 15 and 45 days following intratracheal administration of Bleomycin. At both time points, a statistically significant increase in 35S-sulfate incorporation into glycosaminoglycans was seen in the Bleomycin-treated explants compared with that of the controls. Furthermore, the percentage of label associated with dermatan sulfate was significantly higher in the treated explants than in controls at both 15 and 45 days. Conversely, the percentage of labeled heparin and/or heparan sulfate was significantly lower for the treated explants compared to controls at these times. These results indicate that glycosaminoglycan synthesis is altered from normal in this model of interstitial lung disease. Comparison of these data with previous measurements of glycosaminoglycan synthesis in another model of interstitial lung disease, induced by N-nitroso-N-methylurethane, reveals marked similarity in the changes from normal in 35S-labeling.  相似文献   

10.
Rat liver parenchymal cells were evaluated after 2 days of primary culture for their ability to synthesize and accumulate heparan sulfate as the major component and low-sulfated chondroitin sulfate, dermatan sulfate, chondroitin sulfate and hyaluronic acid as the minor ones. The newly synthesized glycosaminoglycans secreted into the medium were different from those remaining with and/or on the cell layer. Low-sulfated chondroitin 4-sulfate, a major glycosaminoglycan in blood, was synthesized in the order of 320 μg/liver per day, more than 90% of which was secreted into the medium within 16 h and 40% of the glycan secreted was degraded during that time. On the other hand, heparan sulfate, the major glycosaminoglycan synthesized by the parenchymal cells, was mainly distributed in the cell layer. After 8 days of culture, the synthesis of glycosaminoglycans by the cells increased markedly, especially dermatan sulfate, chondroitin sulfate and hyaluronic acid.  相似文献   

11.
Glycosaminoglycan synthesis in endotoxin-induced lung injury   总被引:2,自引:0,他引:2  
Endotoxin-induced lung injury has previously been shown to produce lesions that resemble emphysema morphologically and biochemically as demonstrated by the reduction in the content of lung elastin. The purpose of this study was to define the changes in one other connective tissue component, glycosaminoglycans, during the acute phase of the lung injury. Intravenous administration of a single dose of endotoxin in rats resulted in an increase in the total synthesis of glycosaminoglycans by the pulmonary parenchyma. There was a significant increase in the proportion of dermatan sulfate synthesized during the first 48 hr and a concomitant decrease in heparin/heparan sulfate synthesis. At 48 hr the increased synthesis of dermatan sulfate had reached 7.3 times control values and began to decline, whereas the synthesis of chondroitin-4-sulfate rose from 4.1 to 10.7 times control values between 48 and 72 hr. Analysis of the rates of synthesis revealed that the total amount of heparin/heparan sulfate remained constant while the synthesis of chondroitin-6-sulfate increased proportionally to the overall synthesis of glycosaminoglycans. These findings indicate that dramatic changes in glycosaminoglycan synthesis are an integral part of endotoxin lung injury.  相似文献   

12.
Proteoglycans were extracted from nuclease-digested sonicates of 10(9) rat basophilic leukemia (RBL-1) cells by the addition of 0.1% Zwittergent 3-12 and 4 M guanidine hydrochloride and were purified by sequential CsCl density gradient ultracentrifugation, DE52 ion exchange chromatography, and Sepharose CL-6B gel filtration chromatography under dissociative conditions. Between 0.3 and 0.8 mg of purified proteoglycan was obtained from approximately 1 g initial dry weight of cells with a purification of 200-800-fold. The purified proteoglycans had a hydrodynamic size range of Mr 100,000-150,000 and were resistant to degradation by a molar excess of trypsin, alpha-chymotrypsin, Pronase, papain, chymopapain, collagenase, and elastase. Amino acid analysis of the peptide core revealed a preponderance of Gly (35.4%), Ser (22.5%), and Ala (9.5%). Approximately 70% of the glycosaminoglycan side chains of RBL-1 proteoglycans were digested by chondroitinase ABC and 27% were hydrolyzed by treatment with nitrous acid. Sephadex G-200 chromatography of glycosaminoglycans liberated from the intact molecule by beta-elimination demonstrated that both the nitrous acid-resistant (chondroitin sulfate) and the chondroitinase ABC-resistant (heparin/heparan sulfate) glycosaminoglycans were of approximately Mr 12,000. Analysis of the chondroitin sulfate disaccharides in different preparations by amino-cyano high performance liquid chromatography revealed that 9-29% were the unusual disulfated disaccharide chondroitin sulfate di-B (IdUA-2-SO4----GalNAc-4-SO4); the remainder were the monosulfated disaccharide GlcUA----GalNAc-4-SO4. Subpopulations of proteoglycans in one preparation were separated by anion exchange high performance liquid chromatography and were found to contain chondroitin sulfate glycosaminoglycans whose disulfated disaccharides ranged from 9-49%. However, no segregation of subpopulations without both chondroitin sulfate di-B and heparin/heparan sulfate glycosaminoglycans was achieved, suggesting that RBL-1 proteoglycans might be hybrids containing both classes of glycosaminoglycans. Sepharose CL-6B chromatography of RBL-1 proteoglycans digested with chondroitinase ABC revealed that less than 7% of the molecules in the digest chromatographed with the hydrodynamic size of undigested proteoglycans, suggesting that at most 7% of the proteoglycans lack chondroitin sulfate glycosaminoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The effect of sodium butyrate on the cellular glycosaminoglycans of cultured mastocytoma p-815-4 cells was investigated using enzymic digestion, electrophoresis, nitrous acid degradation, and sequential partition fractionation. The average cellular glycosaminoglycan content of mastocytoma p-815-4 cells grown in the presence of 2 mM sodium butyrate was ten times as much as that of the control p-815-4 cells. Approximately 90% of the glycosaminoglycans isolated from the control cells and 70% from the butyrate-treated cells were found to be chondroitin 4-sulfate by enzymic digestion. The remainders were chondroitinase ABC-resistant. Hyaluronic acid and dermatan sulfate were not detected in either control cells or butyrate-treated cells. The chondroitinase ABC-resistant fraction of glycosaminoglycans from butyrate-treated cells showed a molar ratio of sulfate to uronic acid of more than 2.0, and provided some physicochemical properties characteristics to reference bovine lung heparin.  相似文献   

14.
The relative amount of sulfated glycosaminoglycans associated with the cell layer of parent and SV40-transformed Swiss mouse 3T3 cells was determined from the incorporation of labeled sulfate (35SO4) into macromolecular material. In cultures of SV40-transformed cells, the glycosaminoglycan content per cell was constant over a wide range of densities. In cultures of parent 3T3 cells, the glycosaminoglycan content per cell increased directly with density, the highest values being found in contact-inhibited cultures. At high cell densities, the glycosaminoglycan content of 3T3 cells was several-fold higher than that for SV40-transformed cells. Most of the density-dependent increase in glycosaminoglycans of 3T3 cells was accounted for by chondroitin sulfate (dermatan sulfate) which was over 6-fold higher in confluent cultures than in low density cultures.  相似文献   

15.
The sulfated glycosaminoglycans synthesized in the forelimb plates of rats on days 12, 13, 14, and 15 of gestation were characterized by their susceptibility to various glycosaminoglycan lyases. On days 12 and 13, heparan sulfate accounted for approximately 65% of the newly synthesized sulfated glycosaminoglycans. Small amounts of dermatan sulfate and chondroitin sulfates were also observed. On day 14, the relative amount of chondroitin 4-sulfate began to increase, there being a compensatory decrease in the amount of heparan sulfate. 35S-Sulfate-labeled material was extracted from day-13 forelimb plates with 4 M guanidine/HCl without proteolysis. Using ultracentrifugation on a sucrose density gradient, the extract was separated into two peaks: a light peak (L) mainly composed of heparan sulfate, and a faster-sedimenting peak (M) mainly composed of chondroitin sulfate. The cartilage-type proteoglycan (H) was first detectable on day 14 of gestation, indicating that chondrogenesis in rat forelimb plates starts on day 14 of gestation. In addition to these previously identified glycosaminoglycans or proteoglycans, we isolated an unknown component in the glycosaminoglycan preparations obtained from limb plates during these developmental stages. This component was not found in glycosaminoglycan preparations obtained either from the brain or tail of rat fetuses at the same stages.  相似文献   

16.
As constituents of both extracellular matrix and the cell surface, glycosaminoglycans are in a strategic position to influence several basic cell features. The localization and turnover of glycosaminoglycans was investigated in cultured normal human embryo fibroblasts of lung origin (IMR-90). Attention was directed particularly toward that compartment of the culture which could be released by gentle proteloysis (trypsin, 0.1 mg/ml, 15 min) and is considered to represent the cell surface. In the presence of Na2SO4, sulfated glycosaminoglycans (S-GAGs) of the cell surface were labeled rapidly, but within 30 min some 35S-GAG appeared in the extracellular medium. The intracellular pool of S-GAGs labeled during a 10-min period was lost during the first hr of chase with a half-life of 18 min, compared with 16 hr for S-GAGs labeled over a 48-hr period. Pulse-labeled S-GAGs of the surface turned over with an initial half-life of 60 min, compared with 7 hr for surface material labeled over a 48-hr period. These rapid movements of the early chase period were followed by similar movement at a much slower rate. The results are consistent with a model in which most of the S-GAGs synthesized in the cell move rapidly to the surface. The surface GAGs are then released immediately to the medium or accumulate at the membrane to be shed more slowly at a later time or to be degraded. The S-GAG which left the cell layer most rapidly during chase was dermatan sulfate, while heparan sulfate made up an increasing percentage of the cell layer as chase progressed. These cultures produce a fibrillar matrix of fibronectin, but the kinetics of this study suggest that the S-GAGs of the surface are membrane-bound, and an extracellular glycosaminoglycan matrix does not form.  相似文献   

17.
The metabolism of cell-associated proteoglycans, labeled in the glycosaminoglycan portion with 35SO2-4, was studied in normal skin fibroblasts (SL66 cells), NH4Cl-treated SL66 fibroblasts, and in I-cells derived from patients with mucolipidosis II. Kinetic data from label-chase experiments and gel filtration analysis of the molecular weight distribution of the radiolabeled glycosaminoglycans indicated that I-cells and NH4Cl-treated normal fibroblasts (a) internalize cell surface proteoglycans, (b) remove glycosaminoglycan chains from proteoglycan core proteins, and (c) degrade heparan sulfate glycosaminoglycan chains via an endoglycosidic activity. These processes occur with rates comparable to those in normal fibroblasts. The data are consistent with the hypothesis that the glycosaminoglycan chains of cell-surface proteoglycans are separated from the protein cores in a nonlysosomal compartment prior to the transport of these chains to lysosomes for degradation. These observations also raise the possibility that this early step in separation of glycosaminoglycan chains from protein cores may serve to regulate the levels of glycosaminoglycan-free core protein observed in various cells.  相似文献   

18.
The content and fine structure of keratan and chondroitin/dermatan sulfate in normal human corneas and corneas affected by macular corneal dystrophies (MCD) types I and II were examined by fluorophore-assisted carbohydrate electrophoresis. Normal tissues (n = 11) contained 15 microg of keratan sulfate and 8 microg of chondroitin/dermatan sulfate per mg dry weight. Keratan sulfates consisted of approximately 4% unsulfated, 42% monosulfated, and 54% disulfated disaccharides with number of average chain lengths of approximately 14 disaccharides. Chondroitin/dermatan sulfates were significantly longer, approximately 40 disaccharides per chain, and consisted of approximately 64% unsulfated, 28% 4-sulfated, and 8% 6-sulfated disaccharides. The fine structural parameters were altered in all diseased tissues. Keratan sulfate chain size was reduced to 3-4 disaccharides; chain sulfation was absent in MCD type I corneas and cartilages, and sulfation of both GlcNAc and Gal was significantly reduced in MCD type II. Chondroitin/dermatan sulfate chain sizes were also decreased in all diseased corneas to approximately 15 disaccharides, and the contents of 4- and 6-sulfated disaccharides were proportionally increased. Tissue concentrations (nanomole of chains per mg dry weight) of all glycosaminoglycan types were affected in the disease types. Keratan sulfate chain concentrations were reduced by approximately 24 and approximately 75% in type I corneas and cartilages, respectively, and by approximately 50% in type II corneas. Conversely, chondroitin/dermatan sulfate chain concentrations were increased by 60-70% in types I and II corneas. Such changes imply a modified tissue content of individual proteoglycans and/or an altered efficiency of chain substitution on the core proteins. Together with the finding that hyaluronan, not normally present in healthy adult corneas, was also detected in both disease subtypes, the data support the conclusion that a wide range of keratocyte-specific proteoglycan and glycosaminoglycan remodeling processes are activated during degeneration of the stromal matrix in the macular corneal dystrophies.  相似文献   

19.
We have modified a method (Gilles et al: Anal. Biochem., 159:109-113, 1986) for measuring cell number, that is based on the binding of crystal violet to cell nuclei and used it to assay effects of various glycosaminoglycans on growth of human lung fibroblasts. The procedure was modified by growing cells in microcultures (96 well microplates) and by measuring the amount of adsorbed dye using a microplate photometer after solubilisation of the cells with detergent. There was a linear relationship between absorbance and cell number measured by a Coulter Counter. The method is rapid and sensitive and can be used for screening many samples as well as measuring growth rates at low initial cell densities. Even the low growth rates obtained in the absence of serum can be detected. Human lung fibroblasts were growth arrested by serum deprivation and then grown for periods of up to 4 days in the presence of serum and exogenously added glycosaminoglycans (range, 0.1-100 micrograms/ml). Hyaluronan, chondroitin sulfate, and dextran sulfate were without effects, whereas dermatan sulfate, certain heparan sulfates, and heparin suppressed growth (20%-50% inhibition). The antiproliferative activity of dermatan sulfate increased with increasing iduronate content. Certain heparan sulfates, with moderately high sulfate and L-iduronate contents were better inhibitors than heparin despite the fact that the latter glycan has even higher sulfate and L-iduronate contents. The antiproliferative effect of exogenous glycans appeared after a lag period of 3-4 days, suggesting that they interfered with factors produced by the cells. Furthermore, the degree of inhibition was greater when the initial cell density was low. Above a certain level of seeded cells (approx. 10,000 cells/well), there was no inhibition by any of the glycosaminoglycans. It is possible that exogenous glycans cannot overcome endogenous growth-promoting effects in densely seeded cultures.  相似文献   

20.
The synthesis of sulfated glycosaminoglycans was analysed in mouse fibroblasts during the transition from exponential growth to quiescent monolayers. 'Normal' Swiss 3T3 fibroblasts were compared with SV40 transformed 3T3, C6, ST1 and HeLa cells. p-Nitrophenyl-beta-D-xyloside, an artificial acceptor for glycosaminoglycans synthesis, was used as a probe. Exponentially growing 'normal' 3T3 cells synthesized both dermatan sulfate and chondroitin 4-sulfate, retaining the latter and releasing the former to the medium. Upon reaching quiescence these cells switched to retention of dermatan sulfate and release of chondroitin 4-sulfate. SV3T3 cells synthesized several fold less sulfated glycosaminoglycans than 'normal' 3T3. Even though SV3T3 cells are able to synthesize dermatan sulfate, they only retained chondroitin 4-sulfate, never switching to retention of dermatan sulfate. These results indicated that the transition from rapidly proliferating to resting G0 state in normal cells is accompanied by a switch from chondroitin-sulfate rich to dermatan-sulfate-rich cells. This switching was not observed with transformed cells, which are unable to enter the G0 state. Phenylxyloside caused a several fold increase in glycosaminoglycans released to the medium in both cell types, but it did not interfere with either growth rate or cell morphology. Particularly the phenylxyloside treatment led to an increase of more than 10-fold in production of dermatan and chondroitin sulfate by SV3T3, C6, ST1 and HeLa cells. This demonstrated that transformed cells have a high capacity for glycosaminoglycan synthesis. Analysis of enzymatic degradation products of glycosaminoglycans, synthesized in the presence of phenylxyloside, by normal and transformed cells, led to the finding of 4- and 6-sulfated iduronic and glucuronic acid-containing disaccharides. This result indicated that the xyloside causes the synthesis of a peculiar chondroitin sulfate/dermatan sulfate, in both normal and transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号