首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.
  • 1 Seasonal polyphenism is studied in a community of five African butterflies of the genus Bicyclus at the transition between a wet and a dry season from May to July.
  • 2 Butterflies characterized by large eyespots and, especially in B.sufitza (Hewitson), a pale band (the wet season form) are replaced over this period by butterflies lacking conspicuous wing markings (the dry season form, dsf). The latter butterflies also tend to be larger, but more variable in size. Butterflies of an intermediate phenotype are recruited over a comparatively short interim period.
  • 3 This turnover coincides with a period of declining temperature and drying of the habitat, including the grasses on which larvae feed. Butterflies are progressively more likely to rest on brown leaf litter rather than on green herbage.
  • 4 A relationship with temperature is supported by laboratory experiments with B.saJitza and B.anynana (Butler) showing that increasingly extreme dsf butterflies develop with decreasing rearing temperature in the final larval instar.
  • 5 Some differences in behaviour and activity were observed between the seasonal forms. Butterflies of the dsf develop ovarian dormancy and fat bodies. They can survive to reproduce at the beginning of the rains in November.
  • 6 Capture-recapture experiments showed that the adult butterflies have a comparatively long life expectancy and are quite sedentary.
  • 7 The results are discussed in relation to a hypothesis linking the polyphenism to seasonal changes in resting background and selection for crypsis.
  相似文献   

2.
The “false head” hypothesis states that due to the posterior ventral wing markings of certain butterflies which resemble a “false head,” visually hunting predators, such as birds, are deceived into attacking the hind wing area rather than the true head of the butterfly. In the laboratory, six groups of artificially marked dead cabbage butterflies, Pieris rapae, were presented to Blue Jays, Cyanocitta cristata. Of the six “false head” markings, only the eyespot significantly influenced the point of attack. All of the “false head” markings, however, led to a greater proportion of attacks to the hind wing area of the butterfly. In the course of prey handling following an initial attack, each of the six “false head” markings significantly directed predator handling strikes away from the true head of captive butterflies to the anal angle of the hind wing. In a second experiment, live P. rapae with “false head” markings were mishandled and thus escaped, significantly more frequently than controls. Therefore, “false head” markings may confer a selective advantage by increasing the probability of escape, particularly during handling.  相似文献   

3.
A comparison is made between northern and southern hemisphere populations of Bicyclus butterflies in Africa regarding their responses in wing pattern polyphenism to seasonal change in rainfall and temperature. In southern habitats where temperature and rainfall are often positively correlated, a high temperature during the larval period induces conspicuous wet season forms whereas a fall in temperature elicits cryptic dry season forms. In northern habitats, however, where temperature and rainfall usually are negatively correlated, a rise in temperature should not induce a wet season form because such a rise is correlated with the onset of the dry season. Here, wing pattern plasticity, as measured using museum material, was regressed on mean monthly values for rainfall and temperature. Rainfall appeared to be a frequent determinant of wing pattern plasticity whereas temperature was much less often a significant independent variate. We conclude that the wing pattern may only respond to seasonal change in temperature if rainfall and temperature are positively correlated; in other situations rainfall remains the only significant determinant for wing pattern plasticity.  相似文献   

4.
Plasticity is a crucial component of the life cycle of invertebrates that live as active adults throughout wet and dry seasons in the tropics. Such plasticity is seen in the numerous species of Bicyclus butterflies in Africa which exhibit seasonal polyphenism with sequential generations of adults with one or other of two alternative phenotypes. These differ not only in wing pattern but in many other traits. This divergence across a broad complex of traits is associated with survival and reproduction either in a wet season that is favourable in terms of resources, or mainly in a dry season that is more stressful. This phenomenon has led us to examine the bases of the developmental plasticity in a model species, B. anynana, and also the evolution of key adult life history traits, including starvation resistance and longevity. We now understand something about the processes that generate variation in the phenotype, and also about the ecological context of responses to environmental stress. The responses clearly involve a mix of developmental plasticity as cued by different environments in pre-adult development, and the acclimation of life history traits in adults to their prevailing environment.  相似文献   

5.
Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced‐complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over‐represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini ‐ the largest radiation of mimetic butterflies.  相似文献   

6.
Summary Pieris butterflies use a novel behavioral posture for thermoregulation called reflectance basking, in which the wings are used as solar reflectors to reflect radiation to the body. As a means of exploring the thermoregulatory significance of wing melanization patterns, I examine the relation of basking posture and wing color pattern to body temperature. A mathematical model of the reflectance process predicts certain combinations of dorsal wing melanization pattern and basking posture that maximize body temperature. Laboratory experiments and field observations show that this model correctly predicts qualitative differences in the relation of body temperature to basking posture based on differences in the extent of dorsal melanization on the wing margins, both between species and between sexes within species of Pieris. This is the first demonstration in insects that coloration of the entire wing surface can affect thermoregulation. Model and experimental results suggest that, in certain wing regions, increased melanization can reduce body temperature in Pieris; this effect of melanization is exactly the opposite of that found in other Pierid butterflies that use their wings as solar absorbers. These results are discussed in terms of the evolution of wing melanization pattern and thermoregulatory behavior in butterflies.  相似文献   

7.
8.
  1. Many insects that live in temperate zones spend the cold season in a state of dormancy, referred to as diapause. As the insect must rely on resources that were gathered before entering diapause, keeping a low metabolic rate is of utmost importance. Organs that are metabolically expensive to maintain, such as the brain, can therefore become a liability to survival if they are too large.
  2. Insects that go through diapause as adults generally do so before entering the season of reproduction. This order of events introduces a conflict between maintaining low metabolism during dormancy and emerging afterward with highly developed sensory systems that improve fitness during the mating season.
  3. We investigated the timing of when investments into the olfactory system are made by measuring the volumes of primary and secondary olfactory neuropils in the brain as they fluctuate in size throughout the extended diapause life‐period of adult Polygonia c‐album butterflies.
  4. Relative volumes of both olfactory neuropils increase significantly during early adult development, indicating the importance of olfaction to this species, but still remain considerably smaller than those of nondiapausing conspecifics. However, despite butterflies being kept under the same conditions as before the dormancy, their olfactory neuropil volumes decreased significantly during the postdormancy period.
  5. The opposing directions of change in relative neuropil volumes before and after diapause dormancy indicate that the investment strategies governing structural plasticity during the two life stages could be functionally distinct. As butterflies were kept in stimulus‐poor conditions, we find it likely that investments into these brain regions rely on experience‐expectant processes before diapause and experience‐dependent processes after diapause conditions are broken.
  6. As the shift in investment strategies coincides with a hard shift from premating season to mating season, we argue that these developmental characteristics could be adaptations that mitigate the trade‐off between dormancy survival and reproductive fitness.
  相似文献   

9.
Leaf buds, a factor in host selection by Battus philenor butterflies   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 Field and laboratory experiments identified a character intrinsic to Aristolochia reticulata Nutt. host plants, the terminal leaf bud, that is involved in host-selection behaviour by female pipevine swallowtail butterflies (Battus philenor L.) searching for oviposition sites.
  • 2 In the field, the frequency with which females landed on non-host buds declined seasonally as the proportion of host foliage that consisted of buds decreased. Female butterflies did not land on non-host species in proportion to their abundance; rather, females landed on those non-host species whose buds resembled those of A.reticulata.
  • 3 A.reticulata plants whose terminal leaf bud was concealed by plastic tape were less susceptible to oviposition in the field than were control plants.
  • 4 Female butterflies released in a large, outdoor enclosure were conditioned to search for leaf buds only when exposed to a host species bearing a prominent terminal leaf bud.
  • 5 The significance of conditioning of leaf-bud searching behaviour is discussed with respect to discrimination between hosts and non-hosts, between host species, and among plants within a host species.
  相似文献   

10.
Abstract.
  • 1 In tropical savanna environments rainfall is often very seasonal, so that much of the year is characterized by a long and unpredictable dry season. Because the timing and availability of rain exerts a major influence on plant growth and production, many species during the dry period exhibit dramatic reduction in leaf quality. Accordingly, and kind of behaviour shown by phytophagous insects that synchronizes larval feeding with food availability will be adaptive.
  • 2 The reproductive status of three Mycalesis butterflies was monitored over a 2-year period (1989–90) in north-eastern Queensland, Australia, at a lowland site (Cardwell, 18°16's, 146°02′E) which experiences a pronounced dry season. Females of these species and of five other satyrines (Ypthima, Hypocysta spp.) were also examined less intensively during the dry season in areas throughout northern and central Queensland, north of the tropic of Capricorn.
  • 3 These relatively sedentary butterflies exhibit three different strategies for dealing with the unpredictable dry period and associated deterioration of larval food plants (grass). First, five species appear to breed continuously, though for most reproductive activity (mature egg number) declines markedly in the late dry season. Two of these (Hypocysta irius, H.metirius) are restricted to less seasonal and more favourable (wetter) areas but the three others (Ypthima arctous, H.adiante, H.pseudirius) occur widely in the relatively dry savanna, where they may specialize on grass in moister microenvironments. Second, two species (M.terminus, M.sirius) live in predictably moist habitats which are buffered from climatic extremes; they breed for much of the season but reproductive activity declines as the dry season progresses and may cease late in the season. Third, one species (M.perseus) is more opportunistic, breeding for only a limited interval during the favourable (wet) periods; during the long dry season adults contract to moist refugia and remain in reproductive diapause.
  • 4 Spending the late dry season as an adult, either in diapause or with mature eggs, may improve the capacity to utilize new growth of grasses at the start of the favourable season, thereby enhancing population growth during good times. It may also provide additional flexibility to counter the temporal uncertainty of the dry season.
  • 5 The strategy of residing in more equitable habitats or specializing on predictable foods may be the most restrictive in terms of distribution.
  相似文献   

11.
1. We investigated the effects of two methods of non‐lethal tissue sampling on post‐release flight behaviour (short‐term response) and survival (long‐term response) of two butterflies, Pieris rapae and Coenonympha tullia, within the same natural habitat. We applied three treatments: control (no tissue removal), wing clipping, and leg removal. Our study is the first to directly compare the effects of these common sampling methods. 2. We monitored the flight behaviour of the butterflies by following individuals immediately after their release. In 99 behaviour trials of P. rapae and 101 of C. tullia we found no significant differences in proportion of time spent flying or displacement per unit time among treatment groups in either species. 3. We used standard mark–recapture techniques continuously throughout the flight season to compare the survival of individuals. We marked a total of 687 P. rapae and 490 C. tullia butterflies. We found no significant differences in survival among treatments in either species. 4. We detected differences between the sexes in survival in P. rapae and flight behaviour in C. tullia. In addition to indicating differences in ecology between the sexes, these results also suggest that our analyses were sufficiently powerful to detect a significant effect of tissue removal had such an effect existed. 5. Our work is an important addition to the accumulating evidence that these methods of non‐lethal tissue sampling are generally not detrimental. These sampling techniques closely mimic conditions in the wild, as wing wear and leg losses occur naturally.  相似文献   

12.
1. This article reports the responses of wild, adult jacamars to butterflies with distinct coloration types in central Brazil. Fully aposematic species, i.e. those exhibiting bright and/or contrasting colours on both wing surfaces (= A/A), were predominantly sight‐rejected by birds and, with one exception, the few butterflies attacked and captured were taste‐rejected afterwards. 2. Aposematic and cryptic butterflies, i.e. those exhibiting bright and/or contrasting colours on the upper and cryptic colours on the underwings (= A/C) were sight‐rejected while flying, when they show their conspicuous colours to predators. This suggests that birds associate butterfly colours with their difficulty of capture, as in the case of Morpho and several Coliadinae species. These butterflies, however, were heavily attacked at rest, when they are cryptic. 3, Fully cryptic butterflies, i.e. those exhibiting cryptic colours on both wing surfaces (= C/C) did not elicit sight rejections by birds. Comparisons involving the number of attacks and the capture success of flying and resting individuals showed no significant differences in species more frequently observed like some cracker butterflies (Hamadryas feronia and H. februa) and Taygetis laches. Compared with the A/C Coliadinae, these butterflies showed a lesser, although not significantly different, ability to escape while flying, but a greater and significantly different ability to escape while at rest. 4, A hunting tactic of jacamars, which consists of following flying A/C and C/C butterflies on sight, and waiting until they perch to locate and attack them, is described for the first time.  相似文献   

13.
  1. Mobility in flying animals can be assessed by variations in morpho–ecological traits such as body, thorax and wing sizes, wing shape and the proportion between body mass and wing area. Habitat loss and fragmentation can promote phenotypic plasticity and microevolutionary divergencies in natural populations. In this context, sexual differences in physiology and behaviour can impose different selection pressure on morphological aspects related to flight.
  2. We evaluated the relative impact of forest patch area and habitat amount in shaping flight-related morpho–ecological traits of the tropical butterfly Hamadryas februa. We find a marked sexual dimorphism in the species, with females being larger, having larger thorax, higher wing loadings and larger wing total area than males. These trait values indicate females as the more dispersive sex. We show that habitat amount modulates body mass allocations in both sexes, leading to an increase in thorax mass with decreasing habitat amount. The effect of habitat amount was more pronounced in females, which increased total mass and wing loading while decreasing thorax allocation with decreasing habitat amount. This outcome suggests that females increase abdominal mass in response to a reduction in habitat amount. The focal forest patch increasing area was linked to increases in hindwing lengths in both females and males.
  3. We advocate that both landscape metrics (i.e., habitat amount and patch area) should be considered in studies evaluating landscapes' impacts on insect mobility. We discuss results in terms of the species' sexual differences in flight behaviour and the relative importance of both landscape metrics.
  相似文献   

14.
Butterfly nectaring flowers: butterfly morphology and flower form   总被引:8,自引:0,他引:8  
The profitability of butterfly foraging depends in part on the corolla depth and clustering of flowers, and the tongue length, body mass and wing loading of butterflies. Interactions among these attributes of flowers and butterflies were investigated, using data from a field study in Cornwall and from Porter et al. (1992). The maximum corolla depth from which a butterfly can feed depends on tongue length, which correlates with the more easily measured attributes of body mass and wing loading. Small, short-tongued butterflies did not visit deep flowers. The quantity of nectar sugar per flower necessary for profitable foraging depends on foraging costs, which are expected to correlate with wing loading. Butterfly species with a high wing loading generally confined their visits to flowers that were clustered or very nectar-rich. Butterfly species with a low wing loading included solitary and less nectar-rich flowers in their diet. Body mass and wing loading affect a butterfly's load-carrying capacity (limiting the distance between fuelling stops) and cooling rate (limiting the distance between stops for basking or endothermic warming), and will therefore influence the capacity for floral selectivity and for migration and dispersal. Body mass, wing loading and tongue length characterised families or subfamilies of butterflies. For example vanessine nymphalids, with their long tongues and high wing loading, visited the deep, massed flowers of Buddleja davidii, but lycaenids, with their short tongues and low wing loading, did not. These often visited members of the Asteraceae. Eupatorium cannabinum, with massed flowers offering abundant and accessible nectar, was visited by butterflies of all tongue lengths and both high and low wing loading. These findings may help to inform habitat management for butterfly nectaring flowers.  相似文献   

15.
  1. Traits that are significant to the thermal ecology of temperate or montane species are expected to prominently co-vary with the thermal environment experienced by an organism. The Himalayan Pieris canidia butterfly exhibits considerable variation in wing melanisation. We investigated: (i) whether variation in wing melanisation and (ii) activity period of this montane butterfly was influenced by the seasonally and elevationally changing thermal landscape.
  2. We discovered that wing melanisation varied across elevation, seasons, sex, and wing surfaces, with the variation strongly structured in space and time: colder seasons and higher elevations produced more melanic individuals. Notably, melanisation did not vary uniformly across all wing surfaces: (i) melanisation of the ventral hindwing co-varied much more prominently with elevation, but (ii) melanisation on all other surfaces varied with seasonal changes in the thermal environment.
  3. Observed wing surface-specific patterns indicated thermoregulatory function for this variation in melanisation. Such wing surface-specific responses to seasonal and elevational variation in temperature have rarely been reported in montane insects.
  4. Moreover, daily and seasonal thermal cycles were found to strongly influence activity periods of this species, suggesting the potential limits to wing melanisation plasticity.
  5. Overall, these results showed that the seasonal and elevational gradients in temperature influence the thermal phenotype as well as activity periods of this Himalayan butterfly. It will be critical to study the phenotypic evolution of such montane insects in response to the ongoing climate change, which is already showing significant signs in this iconic mountain range.
  相似文献   

16.
17.
  • Morphological and ecological differences of two forms of Helosciadium repens are known and described in the literature: aquatic and terrestrial. However, their taxonomic status is currently unknown. The question whether they are genotypically adapted to specific environmental conditions or are those differences a result of phenotypic plasticity is addressed in this study.
  • SSR and ISSR data were used to uncover genotypic differences. Data from drought stress experiments (system water content and relative water content of leaves) were used to evaluate the response to water as an environmental factor. The stomatal index of both forms grown under different water treatments was analyzed.
  • The principal component analysis of the ISSR data revealed no clustering that would correspond with ecotypes. The diversity parameters of the SSR data showed no significant differences. The aquatic populations showed a tendency toward heterozygosity, while the terrestrial ones showed a bias toward homozygosity. Both forms responded similarly to the changes in water availability, with newly produced leaves after drought stress that were better adapted to repeated drought stress. Stomatal indices were higher in plants from aquatic habitats, but these differences disappeared when the plants were grown in soil.
  • The observed responses indicate that the differences between forms are due to phenotypic plasticity.
  相似文献   

18.
  • 1.As ectotherms, insects often experience varying temperatures throughout their life cycle, and some respond by becoming more or less melanistic (dark coloring) during development to increase or decrease thermal energy absorption as larvae or adults.
  • 2.Monarch butterflies (Danaus plexippus) breed in temperate and tropical environments worldwide and are exposed to different average and extreme temperatures in different parts of their geographic range. In this study, we compared variation in thermally induced melanism among monarch butterflies from eastern and western North America and from South Florida.
  • 3.We raised the progeny of wild-captured adult butterflies from these populations in a common garden experiment, rearing individuals in cold (19 °C), moderate (26 °C), and hot (32 °C) temperatures to examine population variation in larval and adult pigmentation.
  • 4.Across all populations, monarch larvae developed the darkest coloration in the cold treatment and were lightest when reared in hot temperatures. Similar results were observed for measures of adult wing melanism, with the exception of adult females, which developed darker colored wings in warmer temperatures.
  • 5.Significant population-level differences in average measures of melanism among larvae and adult butterflies were observed. Larvae from the eastern population became substantially darker in colder temperatures than S. Florida or western larvae. Western larvae were lightest overall, which might be adaptive to high temperatures experienced throughout portions of their summer breeding range. S. Florida larvae showed a lower response to cold temperatures relative to monarchs from either migratory population.
  • 6.Population level differences were also observed for thermal responses in wing melanism, particularly among adult females. Moreover, we found significant family level effects for each measure of larval and adult melanism, pointing to a genetic basis or strong maternal effects influencing these traits in monarch butterflies.
  相似文献   

19.
Antagonistic interactions between predators and prey often lead to co‐evolution. In the case of toxic prey, aposematic colours act as warning signals for predators and play a protective role. Evolutionary convergence in colour patterns among toxic prey evolves due to positive density‐dependent selection and the benefits of mutual resemblance in spreading the mortality cost of educating predators over a larger prey assemblage. Comimetic species evolve highly similar colour patterns, but such convergence may interfere with intraspecific signalling and recognition in the prey community, especially for species involved in polymorphic mimicry. Using spectrophotometry measures, we investigated the variation in wing coloration among comimetic butterflies from distantly related lineages. We focused on seven morphs of the polymorphic species Heliconius numata and the seven corresponding comimetic species from the genus Melinaea. Significant differences in the yellow, orange and black patches of the wing were detected between genera. Perceptions of these cryptic differences by bird and butterfly observers were then estimated using models of animal vision based on physiological data. Our results showed that the most strikingly perceived differences were obtained for the contrast of yellow against a black background. The capacity to discriminate between comimetic genera based on this colour contrast was also evaluated to be higher for butterflies than for birds, suggesting that this variation in colour, likely undetectable to birds, might be used by butterflies for distinguishing mating partners without losing the benefits of mimicry. The evolution of wing colour in mimetic butterflies might thus be shaped by the opposite selective pressures exerted by predation and species recognition.  相似文献   

20.
Abstract

German wasps (Vespula germanica F.) and common wasps (V. vulgaris L.) both show variations in colour markings in New Zealand. Overlap in the ranges of markings of the head and thorax is limited enough for ready distinction of queens and workers of the two species. Abdominal markings overlap considerably between the species. Colour markings of males were too similar to identify the species, which were completely separated by the shape of their genitalia. The frequency of occurrence of “intermediate” markings in V. germanica populations did not increase in areas where the two species overlap. This suggests there is little or no genetic exchange between the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号