首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human UDP-galactose transporter (hUGT1) and CMP-sialic acid transporter (hCST) are related Golgi membrane proteins with 10 transmembrane helices. We have constructed chimeras between these proteins in order to identify submolecular regions responsible for the determination of substrate specificity. To assess the UGT and CST activities, chimeric cDNAs were transiently expressed in either UGT-deficient mutant Lec8 cells or CST-deficient mutant Lec2 cells, and the binding of plant lectins, GS-II or PNA, respectively, to these cells was examined. During the course of analysis of various chimeric transporters, we found that chimeras whose submolecular regions contained helices 1, 8, 9, and 10, and helices 2, 3, and 7 derived from hUGT1 and hCST sequences, respectively, exhibited both UGT and CST activities. The dual substrate specificity for UDP-galactose and CMP-sialic acid of one such representative chimera was directly confirmed by in vitro measurement of the nucleotide sugar transport activity using a heterologous expression system in the yeast Saccharomyces cerevisiae. These findings indicated that the regions which are critical for determining the substrate specificity of UGT and CST resided in different submolecular sites in the two transporters, and that these different determinants could be present within one protein without interfering with each other's function.  相似文献   

2.
Nucleotide sugar transporters: biological and functional aspects   总被引:4,自引:0,他引:4  
The Golgi apparatus serves as the major site of glycosylation reactions. Nucleotide sugars which are substrates of the Golgi localized glycosyltransferases are synthesized in the cytoplasm (cell nucleus in case of CMP-sialic acid) and must be transported into the compartment lumen. This transport function is carried out by nucleotide sugar transporters. The first genes were cloned in the year 1996 and revealed a family of structurally conserved multi-transmembrane-spanning proteins. Due to the high structural and functional conservation, the identification of many putative nucleotide sugar transporter sequences has become possible in the existing gene data bases and accelerates the increase in knowledge on structure-function-relationships. Recent developments in the nucleotide sugar transporter field are discussed in this article.  相似文献   

3.
4.
Sialylation of glycans is ubiquitous in vertebrates, but was believed to be absent in plants, arthropods, and fungi. However, recently evidence has been provided for the presence of sialic acid in these evolutionary clades. In addition, homologs of mammalian genes involved in sialylation can be found in the genomes of these taxa and for some Drosophila enzymes, involvement in sialic acid metabolism has been documented. In plant genomes, homologs of sialyltransferase genes have been identified, but there activity could not be confirmed. Several mammalian cell lines exist with defects in the sialylation pathway. One of these is the Chinese hamster ovary cell line Lec2, deficient in CMP-sialic acid transport to the Golgi lumen. These mutants provide the possibility to clone genes by functional complementation. Using expression cloning, we have identified an Arabidopsis thaliana nucleotide sugar transporter that is able to complement the CMP-sialic acid transport deficiency of Lec2 cells. The isolated gene (At5g41760) is a member of the triose-phosphate/nucleotide sugar transporter gene family. Recombinant expression of the gene in yeast and testing in vitro confirmed its ability to transport CMP-sialic acid.  相似文献   

5.
The addition of sialic acid to glycoproteins and glycolipids requires Golgi sialyltransferases to have access to their glycoconjugate substrates and nucleotide sugar donor, CMP-sialic acid. CMP-sialic acid is transported into the lumen of the Golgi complex through the CMP-sialic acid transporter, an antiporter that also functions to transport CMP into the cytosol. We localized the transporter using immunofluorescence and deconvolution microscopy to test the prediction that it is broadly distributed across the Golgi stack to serve the many sialyltransferases involved in glycoconjugate sialylation. The transporter co-localized with ST6GalI in the medial and trans Golgi, showed partial overlap with a medial Golgi marker and little overlap with early Golgi or trans Golgi network markers. Endoplasmic reticulum-retained forms of sialyltransferases did not redistribute the transporter from the Golgi to the endoplasmic reticulum, suggesting that transporter-sialyltransferase complexes are not involved in transporter localization. Next we evaluated the role of the transporter's N- and C-terminal cytoplasmic tails in its trafficking and localization. The N-tail was not required for either endoplasmic reticulum export or Golgi localization. The C-tail was required for endoplasmic reticulum export and contained di-Ile and terminal Val motifs at its very C terminus that function as independent endoplasmic reticulum export signals. Deletion of the last four amino acids of the C-tail (IIGV) eliminated these export signals and prevented endoplasmic reticulum export of the transporter. This form of the transporter supplied limited amounts of CMP-sialic acid to Golgi sialyltransferases but was unable to completely rescue the transporter defect of Lec2 Chinese hamster ovary cells.  相似文献   

6.
Activation of sugars into nucleotide sugars is critical for their entry into biosynthetic pathways. In eukaryotic cells, the activation of the acidic nine-carbon sugar sialic acid to CMP-sialic acid takes place in the cell nucleus, whereas all other nucleotide sugars are made in the cytoplasm. Molecular cloning of vertebrate CMP-sialic acid synthetases confirmed the nuclear localization and introduced new molecular tools for directly exploring the functional mechanisms of the enzymes, as well as the physiological relevance of their nuclear transport. Although major advances have been made in understanding structure-function relationships and defining elements involved in the nuclear transport, the riddle surrounding the physiological relevance of nuclear localization awaits resolution.  相似文献   

7.
We have cloned the human UDP-N-acetylglucosamine (UDP-GlcNAc) transporter cDNA, which was recognized through a homology search in the expressed sequence tags database (dbEST) based on its similarity to the human UDP-galactose transporter. The chromosomal location of the UDP-GlcNAc transporter gene was assigned to chromosome 1p21 by fluorescence in situ hybridization (FISH). The transporter was expressed ubiquitously in every tissue so far examined. Expression of the transporter cDNA in CHO-K1 cells in its native and in a C-terminally HA-tagged form indicated that the human UDP-GlcNAc transporter was localized in the Golgi apparatus. The membrane vesicles prepared from yeast cells expressing the cDNA product exhibited UDP-GlcNAc-specific transporting activity. Comparison among UDP-galactose, CMP-sialic acid, and UDP-GlcNAc transporters from several organisms enabled us to identify residues highly conserved among the transporters and residues specific for each group of transporters.  相似文献   

8.
Previous studies in vitro on proteoglycan biosynthesis from our laboratory have shown that nucleotide sugar precursors of all the sugars of the linkage oligosaccharides (xylose, galactose, and glucuronic acid) and of the glycosaminoglycans (N-acetylglucosamine, N-galactosamine, and glucuronic acid) are transported by specific carriers into the lumen of Golgi vesicles. More recently, we also reported the reconstitution in phosphatidylcholine liposomes of detergent-solubilized Golgi membrane proteins containing transport activities of CMP-sialic acid and adenosine-3'-phosphate-5'-phosphosulfate. We have now completed the successful reconstitution into liposomes of the Golgi membrane transport activities of UDP-galactose, UDP-xylose, and UDP-glucuronic acid. Transport of these nucleotide sugars into Golgi protein proteoliposomes occurred with the same affinity, temperature dependence, and sensitivity to inhibitors as observed with intact Golgi vesicles. Preloading of proteoliposomes with UMP, the putative antiporter for Golgi vesicle transport of these nucleotide sugars, stimulated transport of the nucleotide sugars by 2-3-fold. Transport of UDP-xylose into Golgi protein proteoliposomes was dependent on the presence of endogenous Golgi membrane lipids while that of UDP-galactose and UDP-glucuronic acid was not. This suggests a possible stabilizing or regulatory role for Golgi lipids on the UDP-xylose translocator. Finally, we have also shown that detergent-solubilized Golgi membrane translocator proteins can be partially purified by an ion-exchange chromatographic step before successful reconstitution into liposomes, demonstrating that this reconstitution approach can be used for the biochemical purification of these transporters.  相似文献   

9.
Recent DNA cloning studies have revealed the existence of a large family of homologous sugar transporters in both prokaryotic and eukaryotic organisms. The family includes passive transporters typical of mammalian tissues and active, H(+)-linked sugar transporters from bacteria. Each of these transporters characteristically contains two groups of six putative membrane-spanning alpha-helices separated by a large, hydrophilic, cytoplasmic region. Both the N-terminal and C-terminal regions of the sequence are also predicted to be cytoplasmic. Biophysical and other studies on the human erythrocyte glucose transporter, the only member of the family so far isolated in functional form, suggest that the membrane-spanning alpha-helices associate to form a hydrophilic channel or a substrate-binding cleft extending across the membrane. It is likely that the mechanism of substrate translocation involves alternate exposure of the substrate-binding site to each face of the membrane via a conformational change. Studies in progress on the erythrocyte transporter are beginning to identify regions of the protein involved in substrate binding and the conformational change, and should throw light on the mechanism of sugar translocation in the sugar transporter family as a whole.  相似文献   

10.
HKT1 is a high affinity K(+) transporter protein that is a member of a large superfamily of transporters found in plants, bacteria, and fungi. These transporters are primarily involved in K(+) uptake and are energized by Na(+) or H(+). HKT1 is energized by Na(+) but also mediates low affinity Na(+) uptake and may therefore be a pathway for Na(+) uptake, which is toxic to plants. The aim of this study was to identify regions of HKT1 that are involved in K(+)/Na(+) selectivity and alter the amino acid composition in those regions to increase the ionic selectivity of the transporter. A highly charged loop was identified, and two deletions were created that resulted in the removal of charged and uncharged amino acids. The functional changes caused by the deletions were studied in yeast and Xenopus oocytes. The deletions improved the K(+)/Na(+) selectivity of the transporter and increased the salt tolerance of the yeast cells in which they were expressed. In light of recent structural models of members of this symporter superfamily, it was necessary to determine the orientation of this highly charged loop. Introduction of an epitope tag allowed us to demonstrate that this loop faces the outside of the membrane where it is likely to facilitate the interaction with cations such as K(+) and Na(+). This study has identified an important structural feature in HKT1 that in part determines its K(+)/Na(+) selectivity. Understanding the structural basis of the functional characteristics in transporters such as HKT1 may have important implications for increasing the salt tolerance of higher plants.  相似文献   

11.
The white, brown and scarlet genes of Drosophila melanogaster encode proteins which transport guanine or tryptophan (precursors of the red and brown eye colour pigments) and belong to the ABC transporter superfamily. Current models envisage that the white and brown gene products interact to form a guanine specific transporter, while white and scarlet gene products interact to form a tryptophan transporter. In this study, we report the nucleotide sequence of the coding regions of five white alleles isolated from flies with partially pigmented eyes. In all cases, single amino acid changes were identified, highlighting residues with roles in structure and/or function of the transporters. Mutations in w(cf) (G589E) and w(sat) (F590G) occur at the extracellular end of predicted transmembrane helix 5 and correlate with a major decrease in red pigments in the eyes, while brown pigments are near wild-type levels. Therefore, those residues have a more significant role in the guanine transporter than the tryptophan transporter. Mutations identified in w(crr) (H298N) and w(101) (G243S) affect amino acids which are highly conserved among the ABC transporter superfamily within the nucleotide binding domain. Both cause substantial and similar decreases of red and brown pigments indicating that both tryptophan and guanine transport are impaired. The mutation identified in w(Et87) alters an amino acid within an intracellular loop between transmembrane helices 2 and 3 of the predicted structure. Red and brown pigments are reduced to very low levels by this mutation indicating this loop region is important for the function of both guanine and tryptophan transporters.  相似文献   

12.
The architectural conservation of nucleotide sugar transport proteins (NSTs) enabled the theoretical prediction of putative NSTs in diverse gene databases. In the human genome, 17 NST sequences have been identified but only six have been unequivocally characterized with respect to their transport specificities. Defining transport characteristics of recombinant NSTs has become a major challenge because true zero background systems are widely absent. Production of recombinant NSTs in heterologous systems has developed multifunctionality for some NSTs leading to a novel level of complexity in the field. Assuming that (1) the specificity of NSTs is determined at the primary sequence level and (2) the proteins are autonomously functional units, final definition of the substrate specificity will depend on the use of isolated transport proteins. Herein, we describe the first report of the functional expression of mouse CMP-sialic acid transporter (CST) in Escherichia coli and thus provide significant progress towards the production of transporter proteins in quantities suitable for functional and structural analyses. Recovery of the active NST from inclusion bodies was achieved after solubilization with 8 M urea and stepwise renaturation. After reconstitution into phospholipid vesicles, the recombinant protein demonstrated specific transport for CMP-N-acetylneuraminic acid (CMP-Neu5Ac) with no transport of UDP-sugars. Kinetic studies carried out with CMP-Neu5Ac and established CMP-Neu5Ac antagonist's evaluated natural conformation of the reconstituted protein and clearly demonstrate that the transporter acts as a simple mobile carrier.  相似文献   

13.
Current advances in structural biology provide valuable insights into structure-function relationship of membrane transporters by solving crystal structures of bacterial homologs of human transporters. Therefore, scientists consider bacterial transporters as useful structural models for designing of drugs targeted in human diseases. The functional homology between Vibrio parahaemolyticus Na(+)/galactose transporter (vSGLT) and Na(+)/glucose cotransporter SGLT1 has been well established a decade ago. Now the crystal structure of vSGLT is considered quite valuable in explaining not only the cotransport mechanisms, but it also acts as a representative protein in understanding the protein stability and amino acid interactions within the core structure. We investigated the molecular mechanisms of genetic variations in SGLT1 that cause glucose-galactose malabsorption (GGM) defects using the crystal structure of vSGLT as a model sugar transporter. Our in silico mutagenesis and modeling analysis suggest that the GGM genetic variations lead to conformational changes either by structure destabilization or by formation of unnecessary interaction within the core structure of SGLT1 thereby explaining the genetic defects in Na(+) dependent sugar translocation across the cell membrane.  相似文献   

14.
Members of system N/A amino acid transporter (SNAT) family mediate transport of neutral amino acids, including l-alanine, l-glutamine, and l-histidine, across the plasma membrane and are involved in a variety of cellular functions. By using chemical labeling, glycosylation, immunofluorescence combined with molecular modeling approaches, we resolved the membrane topological structure of SNAT4, a transporter expressed predominantly in liver. To analyze the orientation using the chemical labeling and biotinylation approach, the "Cys-null" mutant of SNAT4 was first generated by mutating all five endogenous cysteine residues. Based on predicted topological structures, a single cysteine residue was introduced individually into all possible nontransmembrane domains of the Cys-null mutant. The cells expressing these mutants were labeled with N-biotinylaminoethyl methanethiosulfonate, a membrane-impermeable cysteine-directed reagent. We mapped the orientations of N- and C-terminal domains. There are three extracellular loop domains, and among them, the second loop domain is the largest that spans from amino acid residue ~242 to ~335. The orientation of this domain was further confirmed by the identification of two N-glycosylated residues, Asn-260 and Asn-264. Together, we showed that SNAT4 contains 10 transmembrane domains with extracellular N and C termini and a large N-glycosylated, extracellular loop domain. This is the first report concerning membrane topological structure of mammalian SNAT transporters, which will provide important implications for our understanding of structure-function of the members in this amino acid transporter family.  相似文献   

15.
The genome of Caenorhabditis elegans encodes for 18 putative nucleotide sugar transporters even though its glycome only contains 7 different monosaccharides. To understand the biological significance of this phenomenon, we have begun a systematic substrate characterization of the above putative transporters and have determined that the gene ZK896.9 encodes a Golgi apparatus transporter for UDP-glucose, UDP-galactose, UDP- N-acetylglucosamine, and UDP- N-acetylgalactosamine. This is the first tetrasubstrate nucleotide sugar transporter characterized for any organism and is also the first nonplant transporter for UDP-glucose. Evidence for the above substrate specificity and substrate transport saturation kinetics was obtained by expression of ZK896.9 in Saccharomyces cerevisiae followed by Golgi enriched vesicle isolation and assays in vitro. Further evidence for UDP-glucose transport was obtained by expression of ZK 896.9 in Giardia lamblia, an organism recently characterized as having endogenous transport activity for only UDP- N-acetylglucosamine. Expression of ZK896.9 was also able to correct the phenotype of a mutant Chinese ovary cell line specifically defective in the transport of UDP-galactose into the Golgi apparatus and of a mutant of the yeast Kluyveromyces lactis specifically defective in the transport of UDP- N-acetylglucosamine into its Golgi apparatus. Because up to now all three other characterized nucleotide sugar transporters of C. elegans have been found to transport two or three substrates, the substrate specificity of ZK896.9 raises questions as to the evolutionary ancestry of this group of proteins in this nematode.  相似文献   

16.
17.
Nucleotide sugar transporters of the Golgi apparatus play an essential role in the glycosylation of proteins, lipids, and proteoglycans. Down-regulation of expression of the transporters for CMP-sialic acid, GDP-fucose, or both unexpectedly resulted in accumulation of glycoconjugates in the Golgi apparatus rather than in the plasma membrane. Pulse-chase experiments with radiolabeled sugars and amino acids showed decreased synthesis and secretion of both nonglycoproteins and glycoproteins. Further studies revealed that the above silencing induced endoplasmic reticulum stress and inhibited protein translation initiation. Together these results suggest that global inhibition of Golgi apparatus glycosylation may lead to important secondary metabolic changes, unrelated to glycosylation.  相似文献   

18.
BackgroundCongenital disorders of glycosylation are caused by defects in the glycosylation of proteins and lipids. Classically, gene defects with multisystem disease have been identified in the ubiquitously expressed glycosyltransferases required for protein N-glycosylation. An increasing number of defects are being described in sugar supply pathways for protein glycosylation with tissue-restricted clinical symptoms.Scope of reviewIn this review, we address the hexosamine and sialic acid biosynthesis pathways in sugar metabolism. GFPT1, PGM3 and GNE are essential for synthesis of nucleotide sugars uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-sialic acid) as precursors for various glycosylation pathways. Defects in these enzymes result in contrasting clinical phenotypes of congenital myasthenia, immunodeficiency or adult-onset myopathy, respectively. We therefore discuss the biochemical mechanisms of known genetic defects in the hexosamine and CMP-sialic acid synthesis pathway in relation to the clinical phenotypes.Major conclusionsBoth UDP-GlcNAc and CMP-sialic acid are important precursors for diverse protein glycosylation reactions and for conversion into other nucleotide-sugars. Defects in the synthesis of these nucleotide sugars might affect a wide range of protein glycosylation reactions. Involvement of multiple glycosylation pathways might contribute to disease phenotype, but the currently available biochemical information on sugar metabolism is insufficient to understand why defects in these pathways present with tissue-specific phenotypes.General significanceFuture research on the interplay between sugar metabolism and different glycosylation pathways in a tissue- and cell-specific manner will contribute to elucidation of disease mechanisms and will create new opportunities for therapeutic intervention. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

19.
ATP-binding cassette (ABC) transporters mediate the movement of molecules across cell membranes in both prokaryotes and eukaryotes. In ABC transporters, solute translocation occurs after ATP is either bound or hydrolyzed at the intracellular nucleotide-binding domains (NBDs). Molecular dynamics (MD) simulations have been employed to study the interactions of nucleotide with NBD. The results of extended (approximately 20 ns) MD simulations of HisP (total simulation time approximately 80 ns), the NBD of the histidine transporter HisQMP2J from Salmonella typhimurium, are presented. Analysis of the MD trajectories reveals conformational changes within HisP that are dependent on the presence of ATP in the binding pocket of the protein, and are sensitive to the presence/absence of Mg ions bound to the ATP. These changes are predominantly confined to the alpha-helical subdomain of HisP. Specifically there is a rotation of three alpha-helices within the subdomain, and a movement of the signature sequence toward the bound nucleotide. In addition, there is considerable conformational flexibility in a conserved glutamine-containing loop, which is situated at the interface between the alpha-helical subdomain and the F1-like subdomain. These results support the mechanism for ATP-induced conformational transitions derived from the crystal structures of other NBDs.  相似文献   

20.
Ishida N  Kuba T  Aoki K  Miyatake S  Kawakita M  Sanai Y 《Genomics》2005,85(1):106-116
We report the molecular cloning of SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family. The gene SLC35D2 maps to chromosome 9q22.33. SLC35D2 cDNA codes for a hydrophobic protein consisting of 337 amino acid residues with 10 putative transmembrane helices. Northern blot analysis revealed the SLC35D2 mRNA as a single major band corresponding to 2.0 kb in length. SLC35D2 was localized in the Golgi membrane and exhibited around 50% similarity with three nucleotide sugar transporters: human SLC35D1 (UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter), fruitfly fringe connection (frc) transporter, and nematode SQV-7 transporter, the latter two being involved in developmental and organogenetic processes. Heterologous expression of SLC35D2 protein in yeast indicated that UDP-N-acetylglucosamine is a candidate for the substrate(s) of the transporter. The sequence similarity, subcellular localization, and transporting substrate suggest that SLC35D2 is a good candidate for the ortholog of frc transporter, which is involved in the Notch signaling system by providing the fringe N-acetylglucosaminyltransferase with the substrate. We also describe the identification and categorization of the human SLC35 gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号