首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Echocardiograms have been assessed only at 56 days in mice overexpressing calcineurin (CN mice). Age-dependent echocardiographic changes were evaluated because the development of sudden death is time dependent. Because cyclosporin A (CsA) reverses hypertrophy in CN mice, its effects on the time course of the development of sudden death and cardiac dysfunction were assessed. In wild-type (WT) mice, the left ventricular (LV) internal end-diastolic dimension (LVIDd) increased and the LV mass index (LVMI) decreased with age. In CN mice, two distinct phases of pathophysiology were found. After 14 days, in CN mice, the LVIDd and LVMI were significantly increased, but sudden death had not occurred. After 28 days, in CN mice, relative dilation of the left ventricle occurred, whereas the LVMI decreased. Sudden death developed during progressive dilation associated with systolic and diastolic dysfunction. CsA treatment reversed hypertrophy in CN mice but did not reverse systolic and diastolic dysfunction and exaggerated sudden death. Sudden cardiac death was associated with systolic and diastolic dysfunction but was not related to isolated cardiac hypertrophy in CN mice.  相似文献   

2.
Mutations in the cardiac myosin heavy chain (MHC) can cause familial hypertrophic cardiomyopathy (FHC). A transgenic mouse model has been developed in which a missense (R403Q) allele and an actin-binding deletion in the alpha-MHC are expressed in the heart. We used an isovolumic left heart preparation to study the contractile characteristics of hearts from transgenic (TG) mice and their wild-type (WT) littermates. Both male and female TG mice developed left ventricular (LV) hypertrophy at 4 mo of age. LV hypertrophy was accompanied by LV diastolic dysfunction, but LV systolic function was normal and supranormal in the young TG females and males, respectively. At 10 mo of age, the females continued to present with LV concentric hypertrophy, whereas the males began to display LV dilation. In female TG mice at 10 mo of age, impaired LV diastolic function persisted without evidence of systolic dysfunction. In contrast, in 10-mo-old male TG mice, LV diastolic function worsened and systolic performance was impaired. Diminished coronary flow was observed in both 10-mo-old TG groups. These types of changes may contribute to the functional decompensation typically seen in hypertrophic cardiomyopathy. Collectively, these results further underscore the potential utility of this transgenic mouse model in elucidating pathogenesis of FHC.  相似文献   

3.
Transverse aortic constriction (TAC) has been widely used to study cardiac hypertrophy, fibrosis, diastolic dysfunction, and heart failure in rodents. Few studies have been reported in preclinical animal models. The similar physiology and anatomy between non-human primates (NHPs) and humans make NHPs valuable models for disease modeling and testing of drugs and devices. In the current study, we aimed to establish a TAC model in NHPs and characterize the structural and functional profiles of the heart after TAC. A non-absorbable suture was placed around the aorta between the brachiocephalic artery and left common carotid artery to create TAC. NHPs were divided into 2 groups according to pressure gradient (PG): the Mild Group (PG=31.01 ± 12.40 mmHg, n=3) and the Moderate Group (PG=53.00 ± 9.37 mmHg, n=4). At 4 weeks after TAC, animals in both TAC groups developed cardiac hypertrophy: enlarged myocytes and increased wall thickness of the left ventricular (LV) anterior wall. Although both TAC groups had normal systolic function that was similar to a Sham Group, the Moderate Group showed diastolic dysfunction that was associated with more severe cardiac fibrosis, as evidenced by a reduced A wave velocity, large E wave velocity/A wave velocity ratio, and short isovolumic relaxation time corrected by heart rate. Furthermore, no LV arrhythmia was observed in either animal group after TAC. A diastolic dysfunction model with cardiac hypertrophy and fibrosis was successfully developed in NHPs.  相似文献   

4.
Left ventricular (LV) diastolic dysfunction is a fundamental impairment in congestive heart failure (CHF). This study examined LV diastolic function in the canine model of CHF induced by chronic coronary embolization (CCE). Dogs were implanted with coronary catheters (both left anterior descending and circumflex arteries) for CCE and instrumented for measurement of LV pressure and dimension. Heart failure was elicited by daily intracoronary injections of microspheres (1.2 million, 90- to 120-microm diameter) for 24 +/- 4 days, resulting in significant depression of cardiac systolic function. After CCE, LV maximum negative change of pressure with time (dP/dt(min)) decreased by 25 +/- 2% (P < 0.05) and LV isovolumic relaxation constant and duration increased by 19 +/- 5% and 25 +/- 6%, respectively (both P < 0.05), indicating an impairment of LV active relaxation, which was cardiac preload independent. LV passive viscoelastic properties were evaluated from the LV end-diastolic pressure (EDP)-volume (EDV) relationship (EDP = be(alpha*EDV)) during brief inferior vena caval occlusion and acute volume loading, while the chamber stiffness coefficient (alpha) increased by 62 +/- 10% (P < 0.05) and the stiffness constant (k) increased by 66 +/- 13% after CCE. The regional myocardial diastolic stiffness in LV anterior and posterior walls was increased by 70 +/- 25% and 63 +/- 24% (both P < 0.05), respectively, after CCE, associated with marked fibrosis, increase in collagen I and III, and enhancement of plasminogen activator inhibitor-1 (PAI-1) protein expression. Thus along with depressed LV systolic function there is significant impairment of LV diastolic relaxation and increase in chamber stiffness, with development of myocardial fibrosis and activation of PAI-1, in the canine model of CHF induced by CCE.  相似文献   

5.
Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.  相似文献   

6.
Pressure overload cardiac hypertrophy may be a compensatory mechanism to normalize systolic wall stress and preserve left ventricular (LV) function. To test this concept, we developed a novel in vivo method to measure myocardial stress (sigma)-strain (epsilon) relations in normal and hypertrophied mice. LV volume was measured using two pairs of miniature omnidirectional piezoelectric crystals implanted orthogonally in the endocardium and one crystal placed on the anterior free wall to measure instantaneous wall thickness. Highly linear sigma-epsilon relations were obtained in control (n = 7) and hypertrophied mice produced by 7 days of transverse aortic constriction (TAC; n = 13). Administration of dobutamine in control mice significantly increased the load-independent measure of LV contractility, systolic myocardial stiffness. In TAC mice, systolic myocardial stiffness was significantly greater than in control mice (3,156 +/- 1,433 vs. 1,435 +/- 467 g/cm(2), P < 0.01), indicating enhanced myocardial contractility with pressure overload. However, despite the increased systolic performance, both active (time constant of LV pressure decay) and passive (diastolic myocardial stiffness constant) diastolic properties were markedly abnormal in TAC mice compared with control mice. These data suggest that the development of cardiac hypertrophy is associated with a heightened contractile state, perhaps as an early compensatory response to pressure overload.  相似文献   

7.
There is emerging evidence that aldosterone can promote diastolic dysfunction and cardiac fibrosis independent of blood pressure effects, perhaps through increased oxidative stress and inflammation. Accordingly, this investigation was designed to ascertain if mineralocorticoid receptor blockade improves diastolic dysfunction independently of changes in blood pressure through actions on myocardial oxidative stress and fibrosis. We used young transgenic (mRen2)27 [TG(mRen2)27] rats with increases in both tissue ANG II and circulating aldosterone, which manifests age-related increases in hypertension and cardiac dysfunction. Male TG(mRen2)27 and age-matched Sprague-Dawley rats were treated with either a low dose (~1 mg·kg(-1)·day(-1)) or a vasodilatory, conventional dose (~30 mg·kg(-1)·day(-1)) of spironolactone or placebo for 3 wk. TG(mRen2)27 rats displayed increases in systolic blood pressure and plasma aldosterone levels as well as impairments in left ventricular diastolic relaxation without changes in systolic function on cine MRI. TG(mRen2)27 hearts also displayed hypertrophy (left ventricular weight, cardiomyoctye hypertrophy, and septal wall thickness) as well as fibrosis (interstitial and perivascular). There were increases in oxidative stress in TG(mRen2)27 hearts, as evidenced by increases in NADPH oxidase activity and subunits as well as ROS formation. Low-dose spironolactone had no effect on systolic blood pressure but improved diastolic dysfunction comparable to a conventional dose. Both doses of spironolactone caused comparable reductions in ROS/3-nitrotryosine immunostaining and perivascular and interstitial fibrosis. These data support the notion mineralocorticoid receptor blockade improves diastolic dysfunction through improvements in oxidative stress and fibrosis independent of changes in systolic blood pressure.  相似文献   

8.

Aims

The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice.

Methods and Results

Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility) using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV) and right ventricular (RV) systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy.

Conclusions

MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.  相似文献   

9.
Impaired renal function with loss of nephron number in chronic renal disease (CKD) is associated with increased cardiovascular morbidity and mortality. However, the structural and functional cardiac response to early and mild reduction in renal mass is poorly defined. We hypothesized that mild renal impairment produced by unilateral nephrectomy (UNX) would result in early cardiac fibrosis and impaired diastolic function, which would progress to a more global left ventricular (LV) dysfunction. Cardiorenal function and structure were assessed in rats at 4 and 16 wk following UNX or sham operation (Sham); (n = 10 per group). At 4 wk, blood pressure (BP), aldosterone, glomerular filtration rate (GFR), proteinuria, and plasma B-type natriuretic peptide (BNP) were not altered by UNX, representing a model of mild early CKD. However, UNX was associated with significantly greater LV myocardial fibrosis compared with Sham. Importantly, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining revealed increased apoptosis in the LV myocardium. Further, diastolic dysfunction, assessed by strain echocardiography, but with preserved LVEF, was observed. Changes in genes related to the TGF-β and apoptosis pathways in the LV myocardium were also observed. At 16 wk post-UNX, we observed persistent LV fibrosis and impairment in LV diastolic function. In addition, LV mass significantly increased, as did LVEDd, while there was a reduction in LVEF. Aldosterone, BNP, and proteinuria were increased, while GFR was decreased. The myocardial, structural, and functional alterations were associated with persistent changes in the TGF-β pathway and even more widespread changes in the LV apoptotic pathway. These studies demonstrate that mild renal insufficiency in the rat results in early cardiac fibrosis and impaired diastolic function, which progresses to more global LV remodeling and dysfunction. Thus, these studies importantly advance the concept of a kidney-heart connection in the control of myocardial structure and function.  相似文献   

10.
Sympathetic nervous activation is a crucial compensatory mechanism in heart failure. However, excess catecholamine may induce cardiac dysfunction and beta-adrenergic desensitization. Although magnesium is known to be a cardioprotective agent, its beneficial effects on acute cardiac dysfunction remain to be elucidated. We examined the effects of magnesium on left ventricular (LV) dysfunction induced by a large dose of isoproterenol in dogs. Sixteen anesthetized dogs underwent a continuous infusion of isoproterenol (1 micro g.kg(-1).min(-1)) with or without a magnesium infusion (1 mg.kg(-1).min(-1)). The dose response to small doses of isoproterenol (0.025-0.2 micro g.kg(-1).min(-1)) was tested hourly. A large dose of isoproterenol decreased LV systolic function, increased the time constant of LV isovolumic relaxation, and suppressed the dose response to small doses of isoproterenol in a time-dependent manner. Magnesium significantly attenuated isoproterenol-induced LV systolic and diastolic dysfunction and preserved the dose response to isoproterenol. Serum-ionized calcium significantly decreased with a large dose of isoproterenol but was fully maintained at baseline level with magnesium. A large dose of isoproterenol increased serum lipid peroxide levels and serological markers of myocardial damage, which were significantly suppressed by magnesium. In conclusion, magnesium significantly attenuated excess isoproterenol-induced acute cardiac dysfunction and beta-adrenergic desensitization.  相似文献   

11.
There is no direct evidence to indicate that pump dysfunction in a dilated chamber reflects the impact of chamber dilatation rather than the degree of intrinsic systolic failure resulting from myocardial damage. In the present study, we explored the relative roles of intrinsic myocardial systolic dysfunction and chamber dilatation as mediators of left ventricular (LV) pump dysfunction. Administration of isoproterenol, a beta-adrenoreceptor agonist, for 3 mo to rats (0.1 mg.kg(-1).day(-1)) resulted in LV pump dysfunction as evidenced by a reduced LV endocardial fractional shortening (echocardiography) and a decrease in the slope of the LV systolic pressure-volume relation (isolated heart preparations). Although chronic beta-adrenoreceptor activation induced cardiomyocyte damage (deoxynucleotidyl transferase-mediated dUTP nick-end labeling) as well as beta(1)- and beta(2)-adrenoreceptor inotropic downregulation (attenuated contractile responses to dobutamine and salbutamol), these changes failed to translate into alterations in intrinsic myocardial contractility. Indeed, LV midwall fractional shortening (echocardiography) and the slope of the LV systolic stress-strain relation (isolated heart preparations) were unchanged. A normal intrinsic myocardial systolic function, despite the presence of cardiomyocyte damage and beta-adrenoreceptor inotropic downregulation, was ascribed to marked increases in myocardial norepinephrine release, to upregulation of alpha-adrenoreceptor-mediated contractile effects as determined by phenylephrine responsiveness, and to compensatory LV hypertrophy. LV pump failure was attributed to LV dilatation, as evidenced by increased LV internal dimensions (echocardiography), and a right shift and increased volume intercept of the LV diastolic pressure-volume relation. In conclusion, chronic sympathetic stimulation, despite reducing beta-adrenoreceptor-mediated inotropic responses and promoting myocyte apoptosis, may nevertheless induce pump dysfunction primarily through LV dilatation, rather than intrinsic myocardial systolic failure.  相似文献   

12.
Diabetes mellitus (DM) causes the development of a specific cardiomyopathy that results from the metabolic derangements present in DM and manifests as cardiac contractile dysfunction. Although myocardial dysfunction in Type 1 DM has been associated with defects in the function and regulation of the sarcoplasmic reticulum (SR), very little is known about SR function in Type 2 DM. Accordingly, this study examined whether abnormalities in cardiac contractile performance and SR function occur in the prestage of Type 2 DM (i.e., during insulin resistance). Sucrose feeding was used to induce whole body insulin resistance, whereas cardiac contractile performance was assessed by echocardiography and SR function was measured by SR calcium (Ca2+) uptake. Sucrose-fed rats exhibited hyperinsulinemia, hyperglycemia, and hyperlipidemia relative to control rats. Serial echocardiographic assessments in the sucrose-fed rats revealed early abnormalities in diastolic function followed by late systolic dysfunction and concurrent alterations in myocardial structure. The hearts of the 10-wk sucrose-fed rats showed depressed SR function demonstrated by a significant reduction in SR Ca2+ uptake. The decline in SR Ca2+ uptake was associated with a significant decrease in the cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of phospholamban. The results show that abnormalities in cardiac contractile performance and SR function occur at an insulin-resistant stage before the manifestation of overt Type 2 DM. cardiomyopathy; diabetes mellitus; echocardiography  相似文献   

13.
Aging is marked by a decline in LV diastolic function, which encompasses abnormalities in diastolic relaxation, chamber filling and/or passive myocardial stiffness. Genetic tractability and short life span make Drosophila melanogaster an ideal organism to study the effects of aging on heart function, including senescent-associated changes in gene expression and in passive myocardial stiffness. However, use of the Drosophila heart tube to probe deterioration of diastolic performance is subject to at least two challenges: the extent of genetic homology to mammals and the ability to resolve mechanical properties of the bilayered fly heart, which consists of a ventral muscle layer that covers the contractile cardiomyocytes. Here, we argue for widespread use of Drosophila as a novel myocardial aging model by (1) describing diastolic dysfunction in flies, (2) discussing how critical pathways involved in dysfunction are conserved across species and (3) demonstrating the advantage of an atomic force microscopy-based analysis method to measure stiffness of the multilayered Drosophila heart tube versus isolated myocytes from other model systems. By using powerful Drosophila genetic tools, we aim to efficiently alter changes observed in factors that contribute to diastolic dysfunction to understand how one might improve diastolic performance at advanced ages in humans.  相似文献   

14.
A recent report indicated that hyperhomocysteinemia (Hhe), in addition to its atherothrombotic effects, exacerbates the adverse cardiac remodeling seen in response to hypertension, a powerful stimulus for pathological ventricular hypertrophy. The present study was undertaken to determine whether Hhe has a direct effect on ventricular remodeling and function in the absence of other hypertrophic stimuli. Male Wistar-Kyoto rats were fed either an amino acid-defined control diet or an intermediate Hhe-inducing diet. After 10 wk of dietary treatment, rats were subjected to echocardiographic assessment of left ventricular (LV) dimensions and systolic function. Subsequently, blood was collected for plasma homocysteine measurements, and the rats were killed for histomorphometric and biochemical assessment of cardiac remodeling and for in vitro cardiac function studies. Significant LV hypertrophy was detected by echocardiographic measurements, and in vitro results showed hypertrophy with significantly increased myocyte size in the LV and right ventricle (RV). LV and RV remodeling was characterized by a disproportionate increase in perivascular and interstitial collagen, coronary arteriolar wall thickening, and myocardial mast cell infiltration. In vitro study of LV function demonstrated abnormal diastolic function secondary to decreased compliance because the rate of relaxation did not differ between groups. LV systolic function did not vary between groups in vitro. In summary, in the absence of other hypertrophic stimuli short-term intermediate Hhe caused pathological hypertrophy and remodeling of both ventricles with diastolic dysfunction of the LV. These results demonstrate that Hhe has direct adverse effects on cardiac structure and function, which may represent a novel direct link between Hhe and cardiovascular morbidity and mortality, independent of other risk factors.  相似文献   

15.
BACKGROUND: Activation of the vitamin D-vitamin D receptor (VDR) axis has been shown to reduce blood pressure and left ventricular (LV) hypertrophy. Besides cardiac hypertrophy, cardiac fibrosis is a key element of adverse cardiac remodeling. We hypothesized that activation of the VDR by paricalcitol would prevent fibrosis and LV diastolic dysfunction in an established murine model of cardiac remodeling. METHODS: Mice were subjected to transverse aortic constriction (TAC) to induce cardiac hypertrophy. Mice were treated with paricalcitol, losartan, or a combination of both for a period of four consecutive weeks. RESULTS: The fixed aortic constriction caused similar increase in blood pressure, both in untreated and paricalcitol- or losartan-treated mice. TAC significantly increased LV weight compared to sham operated animals (10.2±0.7 vs. 6.9±0.3mg/mm, p<0.05). Administration of either paricalcitol (10.5±0.7), losartan (10.8±0.4), or a combination of both (9.2±0.6) did not reduce LV weight. Fibrosis was significantly increased in mice undergoing TAC (5.9±1.0 vs. sham 2.4±0.8%, p<0.05). Treatment with losartan and paricalcitol reduced fibrosis (paricalcitol 1.6±0.3% and losartan 2.9±0.6%, both p<0.05 vs. TAC). This reduction in fibrosis in paricalcitol treated mice was associated with improved indices of LV contraction and relaxation, e.g. dPdtmax and dPdtmin and lower LV end diastolic pressure, and relaxation constant Tau. Also, treatment with paricalcitol and losartan reduced mRNA expression of ANP, fibronectin, collagen III and TIMP-1. DISCUSSION: Treatment with the selective VDR activator paricalcitol reduces myocardial fibrosis and preserves diastolic LV function due to pressure overload in a mouse model. This is associated with a reduced percentage of fibrosis and a decreased expression of ANP and several other tissue markers.  相似文献   

16.
Hypertension affects 1 in 3 adults in the United States and leads to left ventricular (LV) concentric hypertrophy, interstitial fibrosis, and increased stiffness. The treatment of cardiac fibrosis remains challenging and empiric. Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that is highly effective in reducing cardiovascular events in patients and cardiac fibrosis and hypertrophy in animals when administered before pressure overload by promoting the increase of anti-inflammatory M1 macrophages. In this study, we investigated whether EPA mitigates the exacerbation of cardiac remodeling and fibrosis induced by established hypertension, a situation that closely recapitulates a clinical scenario. Twelve-week-old spontaneously hypertensive rats were randomized to eat an EPA-enriched or control diet for 20 weeks. We report that rats eating the EPA-enriched diet exhibited a reduction of interstitial cardiac fibrosis and ameliorated LV diastolic dysfunction despite the continuous increase in blood pressure. However, we found that EPA did not have an impact on cardiac hypertrophy. Interestingly, the EPA diet increased mRNA expression of M2 macrophage marker Mrc1 and interleukin-10 in cardiac tissue. These findings indicated that the antifibrotic effects of EPA are mediated in part by phenotypic polarization of macrophages toward anti-inflammatory M2 macrophages and increases of the anti-inflammatory cytokine, interleukin-10. In summary, EPA prevents the exacerbation of cardiac fibrosis and LV diastolic dysfunction during sustained pressure overload. EPA could represent a novel treatment strategy for hypertensive cardiomyopathy.  相似文献   

17.
Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age‐related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24–30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age‐related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF.  相似文献   

18.
Myocardial fibrosis is an integral component of most cardiac pathologic conditions and contributes to the development of both systolic and diastolic dysfunction. Because of the availability of genetically manipulated animals, mouse models are essential for understanding the mechanisms involved in the pathogenesis of cardiac fibrosis. Accordingly, we characterized the inflammatory and fibrotic response in a mouse model of cardiac pressure overload due to transverse aortic constriction (TAC). Following TAC, mouse hearts exhibited induction of chemokines and proinflammatory cytokines, associated with macrophage, but not neutrophil, infiltration. Induction of inflammatory cytokines was followed by a late upregulation of transforming growth factor (TGF)-β isoforms, activation of the Smad2/3 and Smad1/5 pathways, induction of matricellular proteins, and deposition of collagen. Inflammatory activity decreased after 28 days of TAC; at this timepoint established fibrosis was noted, accompanied by ventricular dilation and systolic dysfunction. Late induction of inhibitory mediators, such as TGF-β, may play an essential role in the transition from inflammation to fibrosis by suppressing inflammatory gene synthesis while inducing matrix deposition. Our findings identify molecular mediators and pathways with a potential role in cardiac fibrosis laying the foundations for studies exploring the pathogenesis of fibrotic cardiac remodeling using genetically targeted mice.  相似文献   

19.
Oxidative stress is closely associated with the pathophysiology of diabetic cardiomyopathy (DCM). The mitochondrial flavoenzyme monoamine oxidase A (MAO-A) is an important source of oxidative stress in the myocardium. We sought to determine whether MAO-A plays a major role in modulating DCM. Diabetes was induced in Wistar rats by single intraperitoneal injection of streptozotocin (STZ). To investigate the role of MAO-A in the development of pathophysiological features of DCM, hyperglycemic and age-matched control rats were treated with or without the MAO-A-specific inhibitor clorgyline (CLG) at 1 mg/kg/day for 8 weeks. Diabetes upregulated MAO-A activity; elevated markers of oxidative stress such as cardiac lipid peroxidation, superoxide dismutase activity, and UCP3 protein expression; enhanced apoptotic cell death; and increased fibrosis. All these parameters were significantly attenuated by CLG treatment. In addition, treatment with CLG substantially prevented diabetes-induced cardiac contractile dysfunction as evidenced by decreased QRS, QT, and corrected QT intervals, measured by ECG, and LV systolic and LV end-diastolic pressure measured by microtip pressure transducer. These beneficial effects of CLG were seen despite the persistent hyperglycemic and hyperlipidemic environments in STZ-induced experimental diabetes. In summary, this study provides strong evidence that MAO-A is an important source of oxidative stress in the heart and that MAO-A-derived reactive oxygen species contribute to DCM.  相似文献   

20.
We investigated the features of the structural and functional organization of the left heart (ventricle—LV, atrium—LA) and the state of systemic hemodynamics at rest and in response to a single dose of cardioselective β1-blocker (BB) Egilok. We examined the patients with stage II (1–2 degrees) of arterial hypertension (AH); the study was performed in summer and winter in the northern regions of Russia. It was found that the process of adaptation to cold is accompanied by the inhibition of the pacemaker, a decrease in the rate of active diastolic blood filling of the LV and transaortic blood flow in the aortic root (VAo), an increase in the contractility of the LV posterior wall and interventricular septum (IVS). The negative chronotropic cardiac effect in these conditions results in the reduction of heart productivity per minute in 65% of cases. In winter we observed a more pronounced diastolic LV dysfunction and a decrease in the connectivity of active relaxation of LV posterior wall and LA walls with certain structural and functional cardiac parameters. In contrast to summer, in winter period BB causes a decrease in the active relaxation of LA walls and IVS and LA contractility, which leads to a decrease in the blood filling of passive and active LV. At the same time, LV systolic function (ejection fraction, VAo) and the rhythm and the performance of the heart (stroke volume and cardiac output) decreases; the hypotensive effect accompanied by an increase in peripheral vascular resistance is more pronounced. In winter, the effect of BB reduces the correlation between IVS and LV posterior wall contractions, but the feedback rate or passive to active LV diastolic hyperemia and after load increases. We suggest that in winter component “contractile apparatus” retains its the leading role in the organization of intracardiac response to the BB in patients with hypertension; in addition, new dominant components were formed: “contingency of the LV wall contraction with afterload” and “reverse contingency of early and late diastolic LV function.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号