首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochromes c 3 of different strains of sulfatereducing bacteria have been purified and tested for their capacity to reduce colloidal sulfur to hydrogen sulfide. The results are in good agreement with the activities reported for the whole cells. Cytochrome c 3 is the sulfur reductase of some strains of sulfate-reducing bacteria such as Desulfovibrio desulfuricans Norway 4 and sulfate-reducing bacterium strain 9974 from which the sulfur reductase activity can be purified with the cytochrome c 3. In contrast, Desulfovibrio vulgaris Hildenborough cytochrome c 3 is inhibited by the product of the reaction namely hydrogen sulfide. Chloramphenicol has no effect on the sulfur reductase activity of D. desulfuricans Norway 4 when resting cells grown on lactate-sulfate medium are put in the presence of colloidal sulfur. This shows that the sulfur reductase activity is constitutive and corresponds to the fact that colloidal sulfur grown cells do not contain more cytochrome c 3 (or another sulfur reductase) than lactate-sulfate-grown cells.  相似文献   

2.
A mixed culture of sulfate-reducing bacteria containing the species Desulfovibrio desulfuricans was used to study sulfate-reduction stoichiometry and kinetics using ethanol as the carbon source. Growth yield was lower, and kinetics were slower, for ethanol compared to lactate. Ethanol was converted into acetate and no significant carbon dioxide production was observed. A mathematical model for growth of sulfate-reducing bacteria on ethanol was developed, and simulations of the growth experiments on ethanol were carried out using the model. The pH variation due to sulfate reduction, and hydrogen sulfide production and removal by nitrogen sparging, were examined. The modeling study is distinct from earlier models for systems using sulfate-reducing bacteria in that it considers growth on ethanol, and analyzes pH variations due to the product-formation reactions.  相似文献   

3.
A unique community of bacteria colonizes the dorsal integument of the polychaete annelid Alvinella pompejana, which inhabits the high-temperature environments of active deep-sea hydrothermal vents along the East Pacific Rise. The composition of this bacterial community was characterized in previous studies by using a 16S rRNA gene clone library and in situ hybridization with oligonucleotide probes. In the present study, a pair of PCR primers (P94-F and P93-R) were used to amplify a segment of the dissimilatory bisulfite reductase gene from DNA isolated from the community of bacteria associated with A. pompejana. The goal was to assess the presence and diversity of bacteria with the capacity to use sulfate as a terminal electron acceptor. A clone library of bisulfite reductase gene PCR products was constructed and characterized by restriction fragment and sequence analysis. Eleven clone families were identified. Two of the 11 clone families, SR1 and SR6, contained 82% of the clones. DNA sequence analysis of a clone from each family indicated that they are dissimilatory bisulfite reductase genes most similar to the dissimilatory bisulfite reductase genes of Desulfovibrio vulgaris, Desulfovibrio gigas, Desulfobacterium autotrophicum, and Desulfobacter latus. Similarities to the dissimilatory bisulfite reductases of Thermodesulfovibrio yellowstonii, the sulfide oxidizer Chromatium vinosum, the sulfur reducer Pyrobaculum islandicum, and the archaeal sulfate reducer Archaeoglobus fulgidus were lower. Phylogenetic analysis separated the clone families into groups that probably represent two genera of previously uncharacterized sulfate-reducing bacteria. The presence of dissimilatory bisulfite reductase genes is consistent with recent temperature and chemical measurements that documented a lack of dissolved oxygen in dwelling tubes of the worm. The diversity of dissimilatory bisulfite reductase genes in the bacterial community on the back of the worm suggests a prominent role for anaerobic sulfate-reducing bacteria in the ecology of A. pompejana.  相似文献   

4.
Crude extracts from 14 species of sulfate-reducing bacteria comprising the genera Desulfovibrio, Desulfotomaculum, Desulfobulbus, and Desulfosarcina and from three species of sulfide-oxidizing bacteria were tested in an enzyme-linked immunosorbent assay with polyclonal antisera to adenosine 5'-phosphosulfate reductase from Desulfovibrio desulfuricans G100A. The results showed that extracts from Desulfovibrio species were all highly cross-reactive, whereas extracts from the other sulfate-reducing genera showed significantly less cross-reaction. An exception was Desulfotomaculum orientis, which responded more like Desulfovibrio species than the other Desulfotomaculum strains tested. Extracts from colorless or photosynthetic sulfur bacteria were either unreactive or exhibited very low levels of reactivity with the antibodies to the enzyme from sulfate reducers. These results were confirmed by using partially purified enzymes from sulfate reducers and the most cross-reactive sulfide oxidizer, Thiobacillus denitrificans. Two types of monoclonal antibodies to adenosine 5'-phosphosulfate reductase were also isolated. One type reacted more variably with the enzymes of the sulfate reducers and poorly with the Thiobacillus enzyme, whereas the second reacted strongly with Desulfovibrio, Desulfotomaculum orientis, and Thiobacillus enzymes.  相似文献   

5.
R Rabus  M Fukui  H Wilkes    F Widdle 《Applied microbiology》1996,62(10):3605-3613
A mesophilic sulfate-reducing enrichment culture growing anaerobically on crude oil was used as a model system to study which nutritional types of sulfate-reducing bacteria may develop on original petroleum constituents in oil wells, tanks, and pipelines. Chemical analysis of oil hydrocarbons during growth revealed depletion of toluene and o-xylene within 1 month and of m-xylene, o-ethyltoluene, m-ethyltoluene, m-propyltoluene, and m-isopropyltoluene within approximately 2 months. In anaerobic counting series, the highest numbers of CFU (6 x 10(6) to 8 x 10(6) CFU ml-1) were obtained with toluene and benzoate. Almost the same numbers were obtained with lactate, a substrate often used for detection of the vibrio-shaped, incompletely oxidizing Desulfovibrio sp. In the present study, however, lactate yielded mostly colonies of oval to rod-shaped, completely oxidizing, sulfate-reducing bacteria which were able to grow slowly on toluene or crude oil. Desulfovibrio species were detected only at low numbers (3 x 10(5) CFU ml-1). In agreement with this finding, a fluorescently labeled, 16S rRNA-targeted oligonucleotide probe described in the literature as specific for members of the Desulfovibrionaceae (suggested family) hybridized only with a small portion (< 5%) of the cells in the enrichment culture. These results are consistent with the observation that known Desulfovibrio species do not utilize aromatic hydrocarbons, the predominant substrates in the enrichment culture. All known sulfate-reducing bacteria which utilize aromatic compounds belong to a separate branch, the Desulfobacteriaceae (suggested family). Most members of this family are complete oxidizers. For specific hybridization with members of this branch, the probe had to be modified by a nucleotide exchange. Indeed, this modified probe hybridized with more than 95% of the cells in the enrichment culture. The results show that completely oxidizing, alkylbenzene-utilizing sulfate-reducing bacteria rather than Desulfovibrio species have to be considered in attempts to understand the microbiology of sulfide production in oil wells, tanks, and pipelines when no electron donors other than the indigenous oil constituents are available.  相似文献   

6.
7.
Sulfate-reducing bacteria are rich in unique redox proteins and electron carriers that participate in a variety of essential pathways. Several studies have been carried out to characterize these proteins, but the structure and function of many are poorly understood. Many Desulfovibrio species can grow using hydrogen as the sole energy source, indicating that the oxidation of hydrogen with sulfite as the terminal electron acceptor is an energy-conserving mechanism. Flavoredoxin is an FMN-binding protein isolated from the sulfate-reducing bacteria Desulfovibrio gigas that participates in the reduction of bisulfite from hydrogen. Here we report the cloning and sequencing of the flavoredoxin gene. The derived amino acid sequence exhibits similarity to several flavoproteins which are members of a new family of flavin reductases suggested to bind FMN in a novel mode.  相似文献   

8.
Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-beta-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h.  相似文献   

9.
Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.  相似文献   

10.
In an investigation on the oxygen tolerance of sulfate-reducing bacteria, a strain was isolated from a 107-fold dilution of the upper 3-mm layer of a hypersaline cyanobacterial mat (transferred from Solar Lake, Sinai). The isolate, designated P1B, appeared to be well-adapted to the varying concentrations of oxygen and sulfide that occur in this environment. In the presence of oxygen strain P1B respired aerobically with the highest rates [260 nmol O2 min–1 (mg protein)–1] found so far among marine sulfate-reducing bacteria. Besides H2 and lactate, even sulfide or sulfite could be oxidized with oxygen. The sulfur compounds were completely oxidized to sulfate. Under anoxic conditions, it grew with sulfate, sulfite, or thiosulfate as the electron acceptor using H2, lactate, pyruvate, ethanol, propanol, or butanol as the electron donor. Furthermore, in the absence of electron donors the isolate grew by disproportionation of sulfite or thiosulfate to sulfate and sulfide. The highest respiration rates with oxygen were obtained with H2 at low oxygen concentrations. Aerobic growth of homogeneous suspensions was not obtained. Additions of 1% oxygen to the gas phase of a continuous culture resulted in the formation of cell clumps wherein the cells remained viable for at least 200 h. It is concluded that strain P1B is oxygen-tolerant but does not carry out sulfate reduction in the presence of oxygen under the conditions tested. Analysis of the 16S rDNA sequence indicated that strain P1B belongs to the genus Desulfovibrio, with Desulfovibrio halophilus as its closest relative. Based on physiological properties strain P1B could not be assigned to this species. Therefore, a new species, Desulfovibrio oxyclinae, is proposed. Received: 7 August 1996 / Accepted: 29 January 1997  相似文献   

11.
Abstract The survival after oxygen stress was studied with eight species of sulfate-reducing bacteria. In the absence of sulfide all species tolerated 6 min of aeration without loss of viability. Even after 3 h of aeration the viability of four species ( Desulfovibrio vulgaris, D. desulfuricans, D. salexigens and Desulfobacter postgatei ) was not impaired. Four other species were sensitive to 3 h of aeration: the surviving fractions of Desulfotomaculum ruminis, D. nigrificans and Desulfococcus multivorans were about 1%, that of Desulfotomaculum orientis about 0.01%. Formation of spores resulted in oxygen resistance of D. orientis . Reducing agents did not protect the vegetative cells of this strain against oxygen toxicity. In contrast, sulfhydryl group-containing agents increased the oxygen sensitivity considerably.
Growth of sulfate- and sulfur-reducing bacteria in oxygen-sulfide gradients in agar tubes was studied. In the gradients these strictly anaerobic bacteria revealed oxygen-dependent growth in sulfate- and sulfur-free medium. Three sulfate-reducing bacteria that could not use thiosulfate or sulfur as electron acceptor failed to grow in oxygen-sulfide gradients. Obviously, not directly molecular oxygen, but oxidation products of sulfide, such as thiosulfate or sulfur, were used as electron acceptors and were continuously regenerated in a cycling process from sulfide by autoxidation. The conceivable ecological significance of a short sulfur cycle driven by autoxidation of sulfide is discussed.  相似文献   

12.
Abstract The metabolism of methanol by acidogenic bacteria ( Butyribacterium methylotrophicum, Sporomusa ovata and Acetobacterium woodii ) was studied in pure culture and in defined mixed cultures with sulfate-reducing bacteria ( Desulfovibrio vulgaris ) or methanogenic bacteria ( Methanobrevibacter arboriphilus strain AZ). In the mixed cultures, less acids (acetate and/or butyrate) were formed per unit methanol converted than in pure cultures. In these mixed cultures, a significant production of sulfide or methane was observed despite the inability of the sulfate reducer and the methanogen to use methanol as an energy substrate. These results are explained in terms of interspecies hydrogen transfer between the acidogens (converting part of the methanol to 1 CO2 and 3 H2) and the Desulfovibrio or Methanobrevibacter species. The bioenergetic aspects of this process and its ecological implications are discussed.  相似文献   

13.
Desulfovibrio vulgaris Madison and Thermodesulfobacterium commune contained functionally distinct hydrogenase activities, one which exchanged 3H2 into 3H2O and was inhibited by carbon monoxide and a second activity which produced H2 in the presence of CO. Cell suspensions of D. vulgaris used either lactate, pyruvate, or CO as the electron donor for H2 production in the absence of sulfate. Both sulfidogenic species produced and consumed hydrogen as a trace gas during growth on lactate or pyruvate as electron donors and on thiosulfate or sulfate as electron acceptors. Higher initial levels of hydrogen were detected during growth on lactate-sulfate than on pyruvate-sulfate. D. vulgaris but not T. commune also produced and then consumed CO during growth on organic electron donors and sulfate or thiosulfate. High partial pressures of exogenous H2 inhibited growth and substrate consumption when D. vulgaris was cultured on pyruvate alone but not when it was metabolizing pyruvate plus sulfate or lactate plus sulfate. The data are discussed in relation to supporting two different models for the physiological function of H2 metabolism during growth of sulfidogenic bacteria on organic electron donors plus sulfate. A trace H2 transformation model is proposed for control of redox processes during growth on either pyruvate or lactate plus sulfate, and an obligate H2 cycling model is proposed for chemiosmotic energy coupling during growth on CO plus sulfate.  相似文献   

14.
A sulfide-resistant ctrain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium or in Berea sandstone cores. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. These data suggest that strain F would be effective in controlling sulfide production in oil reservoirs and other environments.  相似文献   

15.
Crude extracts from 14 species of sulfate-reducing bacteria comprising the genera Desulfovibrio, Desulfotomaculum, Desulfobulbus, and Desulfosarcina and from three species of sulfide-oxidizing bacteria were tested in an enzyme-linked immunosorbent assay with polyclonal antisera to adenosine 5′-phosphosulfate reductase from Desulfovibrio desulfuricans G100A. The results showed that extracts from Desulfovibrio species were all highly cross-reactive, whereas extracts from the other sulfate-reducing genera showed significantly less cross-reaction. An exception was Desulfotomaculum orientis, which responded more like Desulfovibrio species than the other Desulfotomaculum strains tested. Extracts from colorless or photosynthetic sulfur bacteria were either unreactive or exhibited very low levels of reactivity with the antibodies to the enzyme from sulfate reducers. These results were confirmed by using partially purified enzymes from sulfate reducers and the most cross-reactive sulfide oxidizer, Thiobacillus denitrificans. Two types of monoclonal antibodies to adenosine 5′-phosphosulfate reductase were also isolated. One type reacted more variably with the enzymes of the sulfate reducers and poorly with the Thiobacillus enzyme, whereas the second reacted strongly with Desulfovibrio, Desulfotomaculum orientis, and Thiobacillus enzymes.  相似文献   

16.
Waste streams from industrial processes such as metal smelting or mining contain high concentrations of sulfate and metals with low pH. Dissimilatory sulfate reduction carried out by sulfate-reducing bacteria (SRB) at low pH can combine sulfate reduction with metal-sulfide precipitation and thus open possibilities for selective metal recovery. This study investigates the microbial diversity and population changes of a single-stage sulfidogenic gas-lift bioreactor treating synthetic zinc-rich waste water at pH 5.5 by denaturing gradient gel electrophoresis of 16S rRNA gene fragments and quantitative polymerase chain reaction. The results indicate the presence of a diverse range of phylogenetic groups with the predominant microbial populations belonging to the Desulfovibrionaceae from δ-Proteobacteria. Desulfovibrio desulfuricans-like populations were the most abundant among the SRB during the three stable phases of varying sulfide and zinc concentrations and increased from 13% to 54% of the total bacterial populations over time. The second largest group was Desulfovibrio marrakechensis-like SRB that increased from 1% to about 10% with decreasing sulfide concentrations. Desulfovibrio aminophilus-like populations were the only SRB to decrease in numbers with decreasing sulfide concentrations. However, their population was <1% of the total bacterial population in the reactor at all analyzed time points. The number of dissimilatory sulfate reductase (DsrA) gene copies per number of SRB cells decreased from 3.5 to 2 DsrA copies when the sulfide concentration was reduced, suggesting that the cells' sulfate-reducing capacity was also lowered. This study has identified the species present in a single-stage sulfidogenic bioreactor treating zinc-rich wastewater at low pH and provides insights into the microbial ecology of this biotechnological process.  相似文献   

17.
Dimethylsulfoxide reduction by marine sulfate-reducing bacteria   总被引:2,自引:0,他引:2  
Abstract Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurred simultaneously with sulfate reduction and was not effectively inhibited by molybdate, a specific inhibitor of sulfate reduction. The growth yield per mol lactate was 26% higher with DMSO than with sulfate as electron acceptor. In extracts of cells of strain PA2805 grown on sulfate, a low level of DMSO-reducing activity was present (0.013 μmol (mg protein) min); higher levels were found in cells grown on DMSO (0.56 μmol (mg protein) min). In anoxic marine environments DMSO reduction by sulfate-reducing bacteria may lead to enhanced dimethylsulfide emission rates.  相似文献   

18.
Thiosulfate reductase of the dissimilatory sulfate-reducing bacterium Desulfovibrio gigas has been purified 415-fold and its properties investigated. The enzyme was unstable during the different steps of purification as well as during storage at - 15 degrees C. The molecular weight of thiosulfate reductase estimated from the chromatographic behaviour of the enzyme on Sephadex G-200 was close to 220000. The absorption spectrum of the purified enzyme exhibited a protein peak at 278 nm without characteristic features in the visible region. Thiosulfate reductase catalyzed the stoichiometric production of hydrogen sulfide and sulfite from thiosulfate, and exhibited tetrathionate reductase activity. It did not show sulfite reductase activity. The optimum pH of thiosulfate reduction occurred between pH 7.4 and 8.0 and its Km value for thiosulfate was calculated to be 5 - 10(-4)M. The sensitivity of thiosulfate reductase to sulfhydryl reagent and the reversal of the inhibition by cysteine indicated that one or more sulfhydryl groups were involved in the catalytic activity. The study of electron transport between hydrogenase and thiosulfate reductase showed that the most efficient coupling was obtained with a system containing cytochromes c3 (Mr = 13000) and c3 (Mr = 26000).  相似文献   

19.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   

20.
An enzyme which catalyzes the reduction of bisulfite to sulfide and thiosulfate was purified from extracts of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Trithionate was not a product of this reaction nor was it or thiosulfate reduced by the enzyme. High substrate concentrations inhibited sulfide but not thiosulfate formation. The enzyme was named bisulfite reductase II to distinguish it from bisulfite reductase which reduces bisulfite to trithionate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号