首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Biosynthesis of ethylene in tomato and avocado fruit slices, carrot root, pea seedling and tomato shoot segments, Penicillium expansum and Escherichia coli was found to be inhibited by inorganic phosphate. Compared with microbial systems, relatively high concentrations of phosphate in the incubating medium were necessary to bring about a significant inhibition of ethylene production in higher plants. The degree of inhibition in higher plants correlated with the increased internal cellular concentration of phosphate and not with that of the incubating medium. Phosphate concentrations inhibitory for ethylene biosynthesis did not affect the respiration of tomato fruit slices. The phosphate effect was reversible, confined to only the biological systems and was not due to a change in the ionic strength. The differential inhibitory effects of aminoethoxyvinylglycine on ethylene biosynthesis in tomato fruit slices of various stages of ripening, were markedly influenced by high phosphate concentrations. The data indicate a biological significance to the phosphate control of ethylene biosynthesis.  相似文献   

2.
Inorganic phosphate inhibited the biosynthesis of the macrolide antibiotic turimycin in different strains of Streptomyces hygroscopicus. In the wild type strain a depression was observed with increasing phosphate concentrations. A total inhibition was found at 0.1 M phosphate. In a high producing mutant a minimum of turimycin production occured when the phosphate concentration was between 5 mM and 10 mM. Above this concentration the antibiotic synthesis increased again but the production period shifted to a later period of cultivation. Addition of inorganic phosphate resulted in an initial increase of intracellular cyclic AMP content. But a second elevation characterizing the normal level of cyclic AMP throughout the growth phase was prevented by phosphate. Exogenous cyclic AMP as well as positive effectors of the adenylyl cyclase system were able to overcome the phosphate suppression. Cyclic AMP abolished the reduction of protein synthesis following phosphate addition and caused the reappearance of a protein band which may be responsible for the turimycin biosynthesis.  相似文献   

3.
林肯链霉菌合成林可霉素代谢调节的研究   总被引:5,自引:0,他引:5  
在摇瓶条件下研究了葡萄糖、铵盐、磷酸盐对林可霉素产生菌林肯链霉菌的生长及林可霉素生物合成的影响。发酵过程中林可霉素的合成主要发生在菌体生长期,逐渐下降。使用6%的葡萄糖未发现通常所说的“葡萄糖效应”。0.2%铵盐有利于细胞生长,但0.8%NH+4对林可霉素的生物合成具有抑制作用。发酵48h后补加0.6% NH,对林可霉素的生成没有显著影响。0.05%~0.1%磷酸盐对林可霉素合成具有较强的抑制作用。并就磷酸盐对菌体由初级代谢转向次级代谢的作用作了初步考察。  相似文献   

4.
Twenty-six wild-type Streptomyces strains tested for resistance to arsenate, arsenite and antimony(III) could be divided into four groups: those resistant only to arsenite (3) or to arsenate (2) and those resistant (8) or sensitive (13) to both heavy metals. All strains were sensitive to antimony. The structural genes for the ars operon of Escherichia coli were subcloned into various Streptomyces plasmid vectors. The expression of the whole ars operon in streptomycetes may be strain-specific and occurred only from low-copy-number plasmids. The arsC gene product could be expressed from high-copy plasmids and conferred arsenate resistance to both E. coli and Streptomyces species. The ars operon expressed in S. lividans and the arsC gene expressed in S. noursei did not render the synthesis of undecylprodigiosin and nourseothricin, respectively, phosphate-resistant. In addition in wild-type strains of Streptomyces phosphate sensitivity of antibiotic biosynthesis did not show strong correlation with resistance of growth to arsenicals.  相似文献   

5.
Summary Actinorhodin production inStreptomyces coelicolor A3(2) was relatively insensitive to the carbon source concentration but was elicited by nitrogen or phosphate depletion, or by a decline in the growth rate. In starch-glutamate media with nitrogen limitation, increasing the nitrogen supply delayed the onset of antibiotic synthesis and, at concentrations above 30 mM, decreased its rate. In a similar medium with phosphate limitation, increasing the initial phosphate concentration delayed actinorhodin formation and, above 2.5 mM, reduced the rate of synthesis. Experiments in which actinorhodin synthesis was elicited by phosphate depletion at various nitrogen concentrations demonstrated strong suppression by residual glutamate. Cultures in which actinorhodin biosynthesis was initiated by nitrogen depletion were not similarly suppressed by increasing amounts of residual phosphate. The results suggest that actinorhodin production inS. coelicolor A3(2) responds to interacting physiological controls, notable among which is nitrogen catabolite regulation.  相似文献   

6.
Announcement     
Phosphate concentration was found to control the biosynthesis of the antibiotic candicidin by resting cells of Streptomyces griseus. Phosphate concentrations above 1 mM decreased the rate of incorporation of [14C]propionate and [14C]p-aminobenzoic acid into candicidin in relation to the concentration of phosphate. The inhibitory effect of phosphate on incorporation of labeled precursors into candicidin was not caused by inhibition of cellular uptake of precursors. Protein synthesis, sensitive to chloramphenicol, was not affected by phosphate levels that inhibit antibiotic synthesis. Similarly, phosphate concentrations inhibitory to antibiotic synthesis did not affect rifampinsensitive RNA synthesis.  相似文献   

7.
o-Aminobenzoic acid (OABA, anthranilic acid) and related compounds which are known to stimulate the biosynthesis of streptothricin-type antibiotic nourseothricin by Streptomyces noursei JA 3890b were found to increase strongly the NADH/NAD+ ratio in growing mycelium of this strain suggesting that these effectors are capable of interfering with the function of the respiratory chain. In parallel, a complex shift of metabolism was induced shown by simultaneous alteration of mycelial activities of alanine dehydrogenase, glutamine synthetase, and glutamate dehydrogenase. These changes may be responsible for the observed delay of amino acid catabolism and may improve the precursor supply of the secondary metabolism.  相似文献   

8.
The effect of inorganic phosphate on biosynthesis of the polyene antibiotic levorin by Streptomyces levoris was studied. At phosphate concentration of 4.0 mM levorin biosynthesis is repressed by 90%, resulting in an increase of ATP and a condensed inorganic polyphosphates content in the producer cells. At phosphate concentration optimal for levorin production (0.04 mM) the level of intracellular ATP sharply falls by the beginning of the steady-state phase of the producer growth and that of polyphosphates decreases 3-6-fold. The inorganic phosphate exerts different effects on polyphosphate metabolism enzymes, such as polyphosphate: D-glucose-6-phosphotransferase, polyphosphate phosphohydrolase, tripolyphosphate phosphohydrolase, pyrophosphate phosphohydrolase, alkaline and acid phosphatase. The strongest effect of phosphate excess is observed in the case of polyphosphate: D-glucose-6-phosphotransferase, whose activity decreases 2-5-fold. The activity of this enzyme was shown to be correlated with the antibiotic accumulation. The data obtained are indicative of interrelationship between the polyphosphate metabolism and levorin biosynthesis.  相似文献   

9.
The effect of the components of the nutrient medium on growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. The production of proteinase was found to be dependent on the composition of the nutrient medium and showed two peaks, at the 28th and 48th h of growth. The concentrations of the main components of the nutrient medium (peptone and inorganic phosphate) optimal for the biosynthesis of subtilisin-like serine proteinase at the 28th and 48th h of growth were determined in factorial experiments. Complex organic substances, casein at concentrations of 0.5-1%, gelatin at concentrations of 0.5-1%, and yeast extract at a concentration of 0.5%, stimulated the production of subtilisin-like serine proteinase by the recombinant strain. The study of the sporulation dynamics in this strain showed that the proteinase peaks at the 28th and 48th h of growth correspond, respectively, to the initial stage of sporulation and to the terminal stages of endospore formation (V-VII stages of sporulation).  相似文献   

10.
The fermentation medium for bleomycin biosynthesis was optimized with the help of a mathematical method for experiment modelling. With the use of the schemes of orthogonal latin squares the optimal concentrations of the sources of nitrogen, carbon and mineral salts were determined and the negative effect of cupric sulphate on the antibiotic biosynthesis was shown. The antibiotic production on the developed medium was 3.7 times higher than that on the initial medium.  相似文献   

11.
Nonomuraea sp. ATCC 39727 is a novel actinomycete species and the producer of A40926, a glycopeptide antibiotic structurally similar to teichoplanin. In the present study, a defined minimal medium was designed for Nonomuraea fermentation. The influence of initial phosphate, glucose and ammonium concentrations on antibiotic productivity was investigated in batch fermentation and the effect of glucose limitation was studied in fed-batch fermentation. It was found that low initial concentrations of phosphate and ammonium are beneficial for A40926 production and that productivity is not enhanced during glucose limitation. Furthermore, the initiation of A40926 production was not governed by residual ammonium and phosphate concentrations, although the level of these nutrients strongly influenced A40926 production rates and final titers. Electronic Publication  相似文献   

12.
The influence of the cultivation conditions on Bacillus pumilus KMM 62 growth and effectiveness of the production of a subtilisin-like serine proteinase were investigated. Enzyme accumulation in the culture fluid reached the maximum value after 32 and 46-48 h of growth; it depends on the composition of the nutrient medium. The ratio of the concentrations of two main components of the medium, peptone and inorganic phosphate, which was optimal for enzyme biosynthesis was determined by multifactor experiments. Ammonium salts, when introduced as an additional nitrogen source, had different effects on the proteinase biosynthesis at different growth stages: they suppress enzyme production at the early stationary growth phase and stimulate the biosynthesis of the enzyme after 46-48 h of growth. Complex organic substrates (albumin, casein, hemoglobin, and gelatin) have a repressive effect on the biosynthesis of the enzyme. The effect of amino acids on culture growth and enzyme biosynthesis during the early and late stationary growth phase is different. Hydrophilic amino acids, glutamine, and glutamic acid exhibit the most pronounced repressive action on biosynthesis. The activity of different regulatory mechanisms for the synthesis of this proteinase is assumed at the early and late stationary stages of growth.  相似文献   

13.
Fermentation media with different initial concentrations of ammonium and phosphate salts were used to study the inhibitory effects of those ions on growth and production of epothilone in Sorangium cellulosum and Myxococcus xanthus. The native epothilone producer, S. cellulosum was more sensitive to ammonium and phosphate than the heterologous producer, M. xanthus. An ammonium concentration of 12 mM reduced epothilone titers by 90% in S. cellulosum but by only 40% in M. xanthus. When 5 mM phosphate was added to the medium, production in both strains was 60% lower. Higher phosphate concentrations had little additional effect on M. xanthus titers, but epothilone production with 17 mM extra-cellular phosphate in S. cellulosum was 95% lower than in the control condition. The effect of iron supplementation to the fermentation medium was also investigated. Both strains showed best production with 20 microM iron added to the medium.  相似文献   

14.
Effects of glucose, ammonium ions and phosphate on avilamycin biosynthesis in Streptomyces viridochromogenes AS4.126 were investigated. Twenty grams per liter of glucose, 10 mmol/L ammonium ions, and 10 mmol/L phosphate in the basal medium stimulated avilamycin biosynthesis. When the concentrations of glucose, ammonium ions, and phosphate in the basal medium exceeded 20 g/L, 10 mmol/L, and 10 mmol/L, respectively, avilamycin biosynthesis greatly decreased. When 20 g/L glucose was added at 32 h, avilamycin yield decreased by 70.2%. Avilamycin biosynthesis hardly continued when 2-deoxy-glucose was added into the basal medium at 32 h. There was little influence on avilamycin biosynthesis with the addition of the 3-methyl-glucose (20 g/L) at 32 h. In the presence of excess (NH4)2SO4 (20 mmol/L), the activities of valine dehydrogenase and glucose-6-phosphate dehydrogenase were depressed 47.7 and 58.3%, respectively, of that of the control at 48 h. The activity of succinate dehydrogenase increased 49.5% compared to the control at 48 h. The intracellular adenosine triphosphate level and 6-phosphate glucose content of S. viridochromogenes were 128 and 129%, respectively, of that of the control at 48 h, with the addition of the 40 mmol/L of KH2PO4. As a result, high concentrations of glucose, ammonium ions, and inorganic phosphate all led to the absence of the precursors for avilamycin biosynthesis and affected antibiotic synthesis.  相似文献   

15.
The acute effect of porcine calcitonin was tested in 17 patients undergoing chronic haemodialysis. In normal adults calcitonin has no effect on plasma calcium or phosphate levels, but in nine patients both concentrations were substantially reduced after calcitonin. This hypocalcaemic and hypophosphataemic effect was a function of the initial plasma phosphate level but was unrelated to the initial plasma calcium level. Plasma hydroxyproline levels were not significantly different in the two groups an were unaffected by calcitonin. In 11 patients fasting plasma calcitonin levels were undetectable with an assay sensitive to 0-1 mug/1. Calcitonin seems to have an acute effect in chronic renal failure which may not operate by arresting bone resorption but is dependent on the plasma phosphate concentration.  相似文献   

16.
The formation in vitro of prostaglandins E2, D2, and F2alpha from arachidonic acid by rabbit kidney medulla homogenate or microsomal fraction is markedly affected by the composition of the incubation medium employed. Optimal biosynthesis is obtained in 0.1 M potassium phosphate buffer, with the optimum pH being 8.0--8.8. Under these conditions prostaglandin formation is linear up to arachidonic acid concentration of 30 muM. The initial rate of formation of prostaglandin E2 + prostaglandin D2 is 3--4 times higher than that of prostaglandin F2alpha. Reduced glutathione (1 mM) did not affect the biosynthesis by medulla homogenate and produced only small stimulation of the biosynthesis by microsomal powder. Hydroquinone produced a small stimulation at a low concentration of 0.005 mM, and a strong inhibition at concentrations of 0.1 mM or higher. Addition of bovine serum albumin (0.1%) reduced the microsomal biosynthesis of prostaglandins by approximately 80%. Addition of boiled homogenate or boiled 140 000 X g supernatant produced small stimulation of microsomal biosynthesis while 140 000 X g supernatant (not boiled) caused small inhibition which was not dose-related. It appears that rabbit kidney prostaglandin-synthetase converts arachidonic acid to prostaglandins E2 and F2alpha in comparable amounts, without apparent need for a cytoplasmic soluble cofactor or specific reducing agents.  相似文献   

17.
Abstract The cyanobacterium Oscillatoria agardhii was grown under phosphorus limitation. [32P]PO34 uptake experiments showed a biphasic uptake rate vs. phosphate concentration curve. At low phosphate concentrations the initial phosphate uptake rate (V) was almost linearly related to the external phosphate concentration (S). At higher concentrations V was related to S according to Michaelis-Menten kinetics. Temperature, calcium concentration and arsenate showed hardly any effect on the initial slope of the V/S curve. The observed phosphate uptake was therefore regarded to comprise two mechanisms. The first step of transport is diffusion-mediated, whereas the next step must be enzymatically mediated.  相似文献   

18.
Bacteria react to phosphate starvation by activating genes involved in the transport and assimilation of phosphate as well as other phosphorous compounds. Some soil bacteria have evolved an additional mechanism for saving phosphorous. Under phosphate-limiting conditions, they replace their membrane phospholipids by lipids not containing phosphorus. Here, we show that the membrane lipid pattern of the free-living microsymbiotic bacterium Rhizobium (Sinorhizobium) meliloti is altered at low phosphate concentrations. When phosphate is growth limiting, an increase in sulpholipids, ornithine lipids and the de novo synthesis of diacylglyceryl trimethylhomoserine (DGTS) lipids is observed. Rhizobium meliloti phoCDET mutants, deficient in phosphate uptake, synthesize DGTS constitutively at low or high medium phosphate concentrations, suggesting that reduced transport of phosphorus sources to the cytoplasm causes induction of DGTS biosynthesis. Rhizobium meliloti phoU or phoB mutants are unable to form DGTS at low or high phosphate concentrations. However, the functional complementation of phoU or phoB mutants with the phoB gene demonstrates that, of the two genes, only intact phoB is required for the biosynthesis of the membrane lipid DGTS.  相似文献   

19.
The assembly of the core oligosaccharide region of asparagine-linked glycoproteins proceeds by means of the dolichol pathway. The first step of this pathway, the reaction of dolichol phosphate with UDP-GlcNAc to form N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-P-P-dolichol), is under investigation as a possible site of metabolic regulation. This report describes feedback inhibition of this reaction by the second intermediate of the pathway, N-acetylglucosaminyl-N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-GlcNAc-P-P-dolichol), and product inhibition by GlcNAc-P-P-dolichol itself. These influences were revealed when the reactions were carried out in the presence of showdomycin, a nucleoside antibiotic, present at concentrations that block the de novo formation of GlcNAc-GlcNAc-P-P-dolichol but not that of GlcNAc-P-P-dolichol. The apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol under basal conditions were 4.4 and 2.8 microM, respectively. Inhibition was also observed under conditions where mannosyl-P-dolichol (Man-P-dol) stimulated the biosynthesis of GlcNAc-P-P-dolichol; the apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol were 2.2 and 11 microM, respectively. Kinetic analysis of the types of inhibition indicated competitive inhibition by GlcNAc-P-P-dolichol toward the substrate UDP-GlcNAc and non-competitive inhibition toward dolichol phosphate. Inhibition by GlcNAc-GlcNAc-P-P-dolichol was uncompetitive toward UDP-GlcNAc and competitive toward dolichol phosphate. A model is presented for the kinetic mechanism of the synthesis of GlcNAc-P-P-dolichol. GlcNAc-P-P-dolichol also exerts a stimulatory effect on the biosynthesis of Man-P-dol, i.e. a reciprocal relationship to that previously observed between these two intermediates of the dolichol pathway. This network of inhibitory and stimulatory influences may be aspects of metabolic control of the pathway and thus of glycoprotein biosynthesis in general.  相似文献   

20.
Summary Streptomyces clavuligerus produced simultaneously cephamycin C and clavulanic acid in defined medium in long-term fermentations and in resting-cell cultures. Biosynthesis of cephamycin by phosphate-limited resting cells was dissociated from clavulanic acid formation by removing either glycerol or sulphate from the culture medium. In absence of glycerol no clavulanic acid was formed but cephamycin production occurred, whereas in absence of sulphate no cephamycin was synthesized but clavulanic biosynthesis took place. Sulphate, sulphite and thiosulphate were excellent sulphur sources for cephamycin biosynthesis while l-methionine and l-cysteine were poor precursors of this antibiotic. Increasing concentrations of sulphate also stimulated clavulanic acid formation. The biosynthesis of clavulanic acid was much more sensitive to phosphate (10–100 mM) regulation than that of cephamycin. Therefore, the formation of both metabolites was pertially dissociated at 25 mM phosphate. By contrast, nitrogen regulation by ammonium salts or glutamic acid strongly reduced the biosynthesis of both cephamycin and clavulanic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号