首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental autoimmune uveitis (EAU) is a Th1-cell-mediated autoimmune disease. In this study, the correlation between IRBP-specific Th1 cells in PBLs and the histological grading in the eyes was evaluated kinetically during EAU induction. EAU was induced in B10.A mice with IRBP immunization and the eyes were enucleated for histological examination on days 0, 3, 7, 15, and 21 after immunization. To determine the Th1-cell-mediated immune response, Th1 cytokines (IL-12p40 and IFN-gamma) were measured by RT-PCR in inflamed eyes. At mean time, CD4(+) and IFN-gamma(+) double positive T cells (Th1 cells) from PBLs were analyzed by flow cytometry. The level of the IRBP-specific Th1 cells was significantly increased and kinetically changed during EAU induction, but the cells reached peak time early before the disease was onset. Those IRBP-specific Th1 cells in the PBLs were evidence for EAU disease, but its peak time was different from EAU disease in the eyes. Our data suggested that it is very important to collect blood from patients at a suitable time point and the Th1 cells measured by flow cytometry are good marker for disease diagnosis.  相似文献   

2.
We have previously reported that IL-17(+) interphotoreceptor retinoid-binding protein (IRBP) 161-180-specific T cells have a strong pathogenic effect in experimental autoimmune uveitis (EAU) induced in B10RIII mice; however, this pathogenic activity is not solely attributable to the major cytokine, IL-17, produced by these cells. To determine whether other cytokines produced by Th17 cells show a stronger association with their pathogenic activity, we studied the role of IL-22 in EAU. IL-22 is one of the major cytokines produced by these cells. Our results showed that administration of small doses of IL-22 to EAU-susceptible mice significantly reduced the severity of EAU. In addition, mice treated with IL-22 generated decreased numbers of IFN-γ(+) and IL-17(+) uveitogenic T cells, but increased numbers of Foxp3(+) regulatory T cells. Mechanistic studies showed that the effect of the injected IL-22 was on CD11b(+) APCs, which expressed increased levels of IL-22R during induction of disease following immunization with uveitogenic Ag. In vitro IL-22 treatment of CD11b(+) APCs collected from Ag-primed mice resulted in increased expression of programmed death ligand-1 and the production of increased amounts of IL-10 and TGF-β. Moreover, IL-22-treated CD11b(+) APCs caused IRBP161-180-specific T cells to lose their uveitogenic activity and acquire immunosuppressive activity, which suppressed the induction of EAU by additional pathogenic IRBP161-180-specific effector T cells.  相似文献   

3.
Immunization with bovine interphotoreceptor retinoid-binding protein induces autoimmune uveitis in B10.A mice. We have examined whether this soluble retina-specific Ag can induce anterior chamber-associated immune deviation when injected into the anterior chamber (AC) of the eye, and whether this deviant immune response has any effect on uveitis is susceptible mice. The results of these experiments indicate that interphotoreceptor retinoid-binding protein (IRBP) injected intracamerally altered the subsequent immune response of B10.A mice such that a) they were not able to develop IRBP-specific delayed hypersensitivity, nor (b) were they able to express significant autoimmune uveitis following a uveitogenic regimen. Moreover, spleen cells from mice that received IRBP in the AC suppressed uveitis when adoptively transferred into naive recipients. The splenic suppressor cells were able to prevent autoimmune uveitis in recipient mice when administered after the uveitogenic regimen. Most important, IRBP-specific splenic cells from mice treated with IRBP in the AC when injected into mice with established uveitis caused an abrupt cessation of the intraocular inflammation. The ability of intracamerally-injected soluble Ag to induce suppressor T cells that act on the efferent limb of the immune response suggests that the anterior-chamber-associated immune deviation phenomenon may have physiologic relevance in terms of preservation of the integrity of ocular tissue and renders this approach particularly suitable for treating already established experimental autoimmune diseases of this type. These results are discussed in terms of other methods that have been devised experimentally to suppress and prevent autoimmune uveitis and encephalomyelitis.  相似文献   

4.
The identification of regulatory T (Treg) cells was originally based on CD25 expression; however, CD25 is also expressed by activated effector T cells. FoxP3 is a more definitive marker of Treg cells, and CD4(+) FoxP3(+) CD25(+) T cells are considered the dominant natural Treg (nTreg) population. It has been suggested that certain CD4(+) FoxP3(+) Treg cells do not express CD25. In this study, we used a murine model of respiratory infection with Bordetella pertussis to examine the role of Treg cells in protective immunity in the lung. We first demonstrated that CD4(+) FoxP3(+) CD25(-) cells are the dominant Treg population in the lung, gut and liver. Pre-activated lung CD4(+) FoxP3(+) CD25(-) cells suppressed CD4(+) effector T cells in vitro, which was partly mediated by IL-10 and not dependent on cell contact. Furthermore, CD4(+) FoxP3(+) CD25(-) IL-10(+) T cells were found in the lungs of mice at the peak of infection with B. pertussis. The rate of bacterial clearance was not affected by depletion of CD25(+) cells or in IL-10-deficient (IL-10(-/-) ) mice, but was compromised in CD25-depleted IL-10(-/-) mice. Our findings suggest that IL-10-producing CD4(+) FoxP3(+) CD25(-) T cells represent an important regulatory cell in the lung.  相似文献   

5.
Pleiotropic, immunomodulatory effects of type I IFN on T cell responses are emerging. We used vaccine-induced, antiviral CD8(+) T cell responses in IFN-beta (IFN-beta(-/-))- or type I IFN receptor (IFNAR(-/-))-deficient mice to study immunomodulating effects of type I IFN that are not complicated by the interference of a concomitant virus infection. Compared with normal B6 mice, IFNAR(-/-) or IFN-beta(-/-) mice have normal numbers of CD4(+) and CD8(+) T cells, and CD25(+)FoxP3(+) T regulatory (T(R)) cells in liver and spleen. Twice as many CD8(+) T cells specific for different class I-restricted epitopes develop in IFNAR(-/-) or IFN-beta(-/-) mice than in normal animals after peptide- or DNA-based vaccination. IFN-gamma and TNF-alpha production and clonal expansion of specific CD8(+) T cells from normal and knockout mice are similar. CD25(+)FoxP3(+) T(R) cells down-modulate vaccine-primed CD8(+) T cell responses in normal, IFNAR(-/-), or IFN-beta(-/-) mice to a comparable extent. Low IFN-alpha or IFN-beta doses (500-10(3) U/mouse) down-modulate CD8(+) T cells priming in vivo. IFNAR- and IFN-beta-deficient mice generate 2- to 3-fold lower numbers of IL-10-producing CD4(+) T cells after polyclonal or specific stimulation in vitro or in vivo. CD8(+) T cell responses are thus subjected to negative control by both CD25(+)FoxP3(+) T(R) cells and CD4(+)IL-10(+) T(R1) cells, but only development of the latter T(R) cells depends on type I IFN.  相似文献   

6.
Organ-specific autoimmune diseases are usually characterized by repeated cycles of remission and recurrent inflammation. However, where the autoreactive memory T cells reside in between episodes of recurrent inflammation is largely unknown. In this study, we have established a mouse model of chronic uveitis characterized by progressive photoreceptor cell loss, retinal degeneration, focal retinitis, retinal vasculitis, multifocal choroiditis, and choroidal neovascularization, providing for the first time to our knowledge a useful model for studying long-term pathological consequences of chronic inflammation of the neuroretina. We show that several months after inception of acute uveitis, autoreactive memory T cells specific to retinal autoantigen, interphotoreceptor retinoid-binding protein (IRBP), relocated to bone marrow (BM). The IRBP-specific memory T cells (IL-7Rα(High)Ly6C(High)CD4(+)) resided in BM in resting state but upon restimulation converted to IL-17/IFN-γ-expressing effectors (IL-7Rα(Low)Ly6C(Low)CD4(+)) that mediated uveitis. We further show that T cells from STAT3-deficient (CD4-STAT3KO) mice are defective in α4β1 and osteopontin expression, defects that correlated with inability of IRBP-specific memory CD4-STAT3KO T cells to traffic into BM. We adoptively transferred uveitis to naive mice using BM cells from wild-type mice with chronic uveitis but not BM cells from CD4-STAT3KO, providing direct evidence that memory T cells that mediate uveitis reside in BM and that STAT3-dependent mechanism may be required for migration into and retention of memory T cells in BM. Identifying BM as a survival niche for T cells that cause uveitis suggests that BM stromal cells that provide survival signals to autoreactive memory T cells and STAT3-dependent mechanisms that mediate their relocation into BM are attractive therapeutic targets that can be exploited to selectively deplete memory T cells that drive chronic inflammation.  相似文献   

7.
We characterized CD8(+) T cells constitutively expressing CD25 in mice lacking the expression of MHC class II molecules. We showed that these cells are present not only in the periphery but also in the thymus. Like CD4(+)CD25(+) T cells, CD8(+)CD25(+) T cells appear late in the periphery during ontogeny. Peripheral CD8(+)CD25(+) T cells from MHC class II-deficient mice also share phenotypic and functional features with regulatory CD4(+)CD25(+) T cells: in particular, they strongly express glucocorticoid-induced TNFR family-related gene, CTLA-4 and Foxp3, produce IL-10, and inhibit CD25(-) T cell responses to anti-CD3 stimulation through cell contacts with similar efficiency to CD4(+)CD25(+) T cells. However, unlike CD4(+)CD25(+) T cells CD8(+)CD25(+) T cells from MHC class II-deficient mice strongly proliferate and produce IFN-gamma in vitro in response to stimulation in the absence of exogenous IL-2.  相似文献   

8.
In a previous study, we demonstrated that immunization with the uveitogenic peptide interphotoreceptor retinoid-binding protein (IRBP) 1-20 induces both CD4 and CD8 uveitogenic T cells in the B6 mouse. In the current study, we determined the role of the CD8 IRBP-specific T cells in the pathogenesis of experimental autoimmune uveitis. We also determined the conditions that facilitated the activation of CD8 autoreactive T cells. Our results showed that the beta2-microglobulin(-/-) mouse had a greatly decreased susceptibility to induction of experimental autoimmune uveitis by adoptive transfer of IRBP-specific T cells from B6 mice. We also showed that unlike CD4 autoreactive T cells, activated CD8 autoreactive T cells produced only a limited number and amounts of growth factors. As a result, in the absence of exogenously supplied growth factor(s), CD8 T cell activation and expansion were aborted. However, the growth and expansion of triggered CD8 autoreactive T cells could be supported by various cytokines. In addition to factors produced by activated CD4 autoreactive T cells, factors produced by nonlymphoid cells, such as IL-7 and IL-15, and unidentified factors in the culture supernatants of astrocytes and retinal pigment epithelial cells support the CD8 autoreactive T cells as well. Finally, we showed that, although several cytokines augmented the CD8 T cell response in vitro, different cytokines appeared to act on different CD8 subsets or on different activation/differentiation phases of CD8 autoreactive T cells. As a result, cytokines, such as IL-7, supported the proliferation and survival of CD8 IRBP-specific T cells, while others had only a growth-promoting effect.  相似文献   

9.
Th17 cells are implicated in CNS autoimmune diseases. We show that mice with targeted-deletion of Stat3 in CD4(+) T cells (CD4(Stat3)(-/-)) do not develop experimental autoimmune uveoretinitis (EAU) or experimental autoimmune encephalomyelitis. Defective Th17 differentiation noted in CD4(Stat3)(-/-) mice is compensated by exaggerated increases in Foxp3-, IL-10-, IL-4-, and IFN-gamma-expressing T cells, suggesting critical roles of STAT3 in shaping Ag-specific CD4(+) T cell repertoire. In mice with EAU, a high percentage of IL-17-expressing T cells in their peripheral lymphoid organs also secrete IFN-gamma while these double-expressors are absent in CD4(Stat3)(-/-) and wild-type mice without EAU, raising the intriguing possibility that uveitis maybe mediated by Th17 and IL-17-expressing Th1 cells. Resistance of Stat3-deficient mice to EAU derives in part from an inability of uveitogenic Th17 and Th1 cells to enter eyes or brain of the CD4(Stat3)(-/-) mouse because of the reduction in the expression of activated alpha4/beta1 integrins on CD4(Stat3)(-/-) T cells. Adoptive transfer of activated interphotoreceptor retinoid-binding protein-specific uveitogenic T cells induced in CD4(Stat3)(-/-) mice a severe EAU characterized by development of retinal folds, infiltration of inflammatory cells into the retina, and destruction of retinal architecture, underscoring our contention that the loss of STAT3 in CD4(+) T cells results in an intrinsic developmental defect that renders CD4(Stat3)(-/-) resistant to CNS inflammatory diseases. STAT3 requirement for IL-17 production by Th17, generation of double positive T cells expressing IL-17 and IFN-gamma, and for T cell trafficking into CNS tissues suggests that STAT3 may be a therapeutic target for modulating uveitis, sceritis, or multiple sclerosis.  相似文献   

10.
Recent studies have emphasized the importance of T cells with regulatory/suppressor properties in controlling autoimmune diseases. A number of different types of regulatory T cells have been described with the best characterized being the CD25(+) population. In addition, it has been shown that regulatory T cells can be induced by specific Ag administration. In this study, we investigate the relationship between peptide-induced, CD4(+) regulatory T cells and naturally occurring CD4(+)CD25(+) cells derived from the Tg4 TCR-transgenic mouse. Peptide-induced cells were FoxP3(-) and responded to Ag by secreting IL-10, whereas CD25(+) cells failed to secrete this cytokine. Both cell types were able to suppress the proliferation of naive lymphocytes in vitro although with distinct activation sensitivities. Depletion of CD25(+) cells did not affect the suppressive properties of peptide-induced regulators. Furthermore, peptide-induced regulatory/suppressor T cells could be generated in RAG(-/-), TCR-transgenic mice that do not spontaneously generate CD25(+) regulatory cells. These results demonstrate that these natural and induced regulatory cells fall into distinct subsets.  相似文献   

11.
12.
Experimental autoimmune uveitis (EAU) and experimental autoimmune pinealitis (EAP) are CD4+ T cell-mediated inflammatory diseases of the uveal tract and retina of the eye and of the pineal gland. EAU and EAP can be induced by several retinal autoantigens including S-antigen (S-Ag) and interphotoreceptor retinoid binding protein (IRBP). In this study we investigated the effect of intravenous administration of S-Ag and IRBP coupled to syngeneic spleen cells on the development of EAU and EAP. Injection of S-Ag or IRBP coupled to spleen cells 5 days prior to immunization with native S-Ag or IRBP, respectively, was effective in preventing the induction of EAU and EAP in LEW rats. Conversely, LEW rats receiving S-Ag-coupled spleen cells and challenged with IRBP or LEW rats receiving IRBP-coupled spleen cells and challenged with S-Ag developed a severe EAU within 10 days to 2 weeks following immunization, as did all control animals receiving sham-coupled spleen cells and challenged with the two retinal antigens. The results show that the administration of retinal autoantigens coupled to spleen cells effectively protects against the development of EAU when animals are subsequently challenged with the tolerizing antigen but not when challenged with another unrelated pathogenic retinal autoantigen.  相似文献   

13.
Mucosal tolerance induction generally requires multiple or large Ag doses. Because microfold (M) cells have been implicated as being important for mucosal tolerance induction and because reovirus attachment protein sigma1 (psigma1) is capable of binding M cells, we postulated that targeting a model Ag to M cells via psigma1 could induce a state of unresponsiveness. Accordingly, a genetic fusion between OVA and the M cell ligand, reovirus psigma1, termed OVA-psigma1, was developed to enhance tolerogen uptake. When applied nasally, not parenterally, as little as a single dose of OVA-psigma1 failed to induce OVA-specific Abs even in the presence of adjuvant. Moreover, the mice remained unresponsive to peripheral OVA challenge, unlike mice given multiple nasal OVA doses that rendered them responsive to OVA. The observed unresponsiveness to OVA-psigma1 could be adoptively transferred using cervical lymph node CD4(+) T cells, which failed to undergo proliferative or delayed-type hypersensitivity responses in recipients. To discern the cytokines responsible as a mechanism for this unresponsiveness, restimulation assays revealed increased production of regulatory cytokines, IL-4, IL-10, and TGF-beta1, with greatly reduced IL-17 and IFN-gamma. The induced IL-10 was derived predominantly from FoxP3(+)CD25(+)CD4(+) T cells. No FoxP3(+)CD25(+)CD4(+) T cells were induced in OVA-psigma1-dosed IL-10-deficient (IL-10(-/-)) mice, and despite showing increased TGF-beta1 synthesis, these mice were responsive to OVA. These data demonstrate the feasibility of using psigma1 as a mucosal delivery platform specifically for low-dose tolerance induction.  相似文献   

14.
Female patients suffering from autoimmune uveitis are reported to experience a temporary remission during pregnancy. Experimental autoimmune uveitis (EAU) is a model for human uveitis. Here we examine the effect of pregnancy on the development of EAU and its associated immunological responses. Susceptible C57BL/6 mice were immunized with interphotoreceptor retinoid-binding protein (IRBP). EAU scores and Ag-specific responses were evaluated 21 days later. Mice immunized during pregnancy developed significantly less EAU than nonpregnant controls. Their lymph node cells and splenocytes produced a distinct pattern of cytokines in response to IRBP: reduced IFN-gamma and IL-12 p40, but unchanged levels of TNF-alpha, IL-4, IL-5, and IL-10. Anti-IRBP Ab isotypes revealed an up-regulation of IgG1, indicating a possible Th2 bias at the humoral level. Ag-specific proliferation and delayed hypersensitivity, as well as mitogen-induced IFN-gamma production, remained undiminished, arguing against an overall immune deficit. Interestingly, pregnant mice that received an infusion of IRBP-primed lymphoid cells from nonpregnant donors also developed reduced EAU, suggesting that pregnancy suppresses not only the generation, but also the function of mature uveitogenic effector T cells. Pregnant mice at the time of immunization exhibited elevated levels of TGF-beta, but not of IL-10, in the serum. We suggest that protection from EAU during pregnancy is due primarily to a selective reduction of Ag-specific Th1 responses with only marginal enhancement of Th2 function, and that these effects may in part be secondary to elevated systemic levels of TGF-beta.  相似文献   

15.
Although FoxP3 has been shown to be the most specific marker for regulatory CD4(+) T cells, its significance in the CD8(+) T cell population is not well understood. In this study, we show that the in vitro stimulation of human PBMC with hepatitis C virus or Flu virus-specific peptides gives rise to two distinct Ag-specific T cell populations: FoxP3(-) and FoxP3(+)CD8(+) T cells. The FoxP3(+) virus-specific CD8(+) T cells share phenotypical markers of regulatory T cells, such as CTLA-4 and glucocorticoid-induced TNFR family-related gene, and do produce moderate amounts of IFN-gamma but not IL-2 or IL-10. IL-2 and IL-10 are critical cytokines, however, because the expansion of virus-specific FoxP3(+)CD8(+) T cells is blocked by IL-2- or IL-10-neutralizing mAbs. The virus-specific FoxP3(+)CD8(+) T cells have a reduced proliferative capacity, indicating anergy, and display a cell-cell contact-dependent suppressive activity. Taken together, our results indicate that stimulation with a defined viral Ag leads to the expansion of two different cell populations: FoxP3(-) memory/effector as well as FoxP3(+) regulatory virus-specific CD8(+) T cells.  相似文献   

16.
The oral administration of myelin proteins has been used for the successful prevention and treatment of experimental autoimmune encephalomyelitis (EAE). We questioned whether the thymus was involved in oral tolerance. In this study, euthymic myelin basic protein (MBP) TCR transgenic mice are protected from EAE when fed MBP but are not protected when thymectomized. Similarly, in a cell transfer system, T cell responses to OVA measured in vivo were suppressed significantly only in the OVA-fed euthymic mice but not in the thymectomized mice. We observed that the absence of the thymus dramatically enhanced the Th1 response. We explored three alternatives to determine the role of the thymus in oral tolerance: 1) as a site for the induction of regulatory T cells; 2) a site for deletion of autoreactive T cells; or 3) a site for the dissemination of naive T cells. We found that Foxp3(+)CD4(+)CD25(+) T cells are increased in the periphery but not in the thymus after Ag feeding. These CD4(+)CD25(+) T cells also express glucocorticoid-induced TNFR and intracellular CTLA4 and suppress Ag-specific proliferation of CD4(+)CD25(-) cells in vitro. The thymus also plays a role in deletion of autoreactive T cells in the periphery following orally administered MBP. However, thymectomy does not result in homeostatic proliferation and the generation of memory cells in this system. Overall, the oral administration of MBP has a profound effect on systemic immune responses, mediated largely by the generation of regulatory T cells that act to prevent or suppress EAE.  相似文献   

17.
18.
Experimental autoimmune uveitis (EAU) induced by immunization of animals with retinal Ags is a model for human uveitis. The immunosuppressive cytokine IL-10 regulates EAU susceptibility and may be a factor in genetic resistance to EAU. To further elucidate the regulatory role of endogenous IL-10 in the mouse model of EAU, we examined transgenic (Tg) mice expressing IL-10 either in activated T cells (inducible) or in macrophages (constitutive). These IL-10-Tg mice and non-Tg wild-type controls were immunized with a uveitogenic regimen of the retinal Ag interphotoreceptor retinoid-binding protein. Constitutive expression of IL-10 in macrophages abrogated disease and reduced Ag-specific immunological responses. These mice had detectable levels of IL-10 in sera and in ocular extracts. In contrast, expression of IL-10 in activated T cells only partially protected from EAU and marginally reduced Ag-specific responses. All IL-10-Tg lines showed suppression of Ag-specific effector cytokines. APC from Tg mice constitutively expressing IL-10 in macrophages exhibited decreased ability to prime naive T cells, however, Ag presentation to already primed T cells was not compromised. Importantly, IL-10-Tg mice that received interphotoreceptor retinoid-binding protein-specific uveitogenic T cells from wild-type donors were protected from EAU. We suggest that constitutively produced endogenous IL-10 ameliorates the development of EAU by suppressing de novo priming of Ag-specific T cells and inhibiting the recruitment and/or function of inflammatory leukocytes, rather than by inhibiting local Ag presentation within the eye.  相似文献   

19.
X Wang  F Liu  S Zhou  Z Xu  J Hoellwarth  X Chen  L He  R Zhang  F Liu  J Wang  C Su 《PloS one》2012,7(7):e40359
CD4(+)CD25(+) regulatory T cells (Tregs) do not only influence self-antigen specific immune responses, but also dampen the protective effect induced by a number of vaccines. The impact of CD4(+)CD25(+) Tregs on vaccines against schistosomiasis, a neglected tropical disease that is a major public health concern, however, has not been examined. In this study, a DNA vaccine encoding a 26 kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST) was constructed and its potential effects were evaluated by depleting CD25(+) cells prior to pVAX1-Sj26GST immunization. This work shows that removal of CD25(+) cells prior to immunization with the pVAX1-Sj26GST schistosomiasis DNA vaccine significantly increases the proliferation of splenocytes and IgG levels. However, CD25(+) cell-depleted mice immunized with pVAX1-Sj26GST show no improved protection against S. japonicum. Furthermore, depletion of CD25(+) cells causes an increase in both pro-inflammatory cytokines (e.g. IFN-γ, GM-CSF and IL-4) and an anti-inflammatory cytokine (e.g. IL-10), with CD4(+)CD25(-) T cells being one of the major sources of both IFN-γ and IL-10. These findings indicate that partial CD25(+) cell depletion fails to enhance the effectiveness of the schistosome vaccine, possibly due to IL-10 production by CD4(+)CD25(-) T cells, or other cell types, after CD25(+) cell depletion during vaccination.  相似文献   

20.
Despite the unequivocal role of B lymphocytes as effecter cells in humoral immunity, studies have reported that B cells are tolerogenic. The impact of B cell-mediated tolerance and its underlying mechanisms are incompletely understood. Using primary B cells as APCs and allogeneic CD4 T cells as responder cells in mixed leukocyte reactions, we find that B cells preferentially expand FoxP3(+) over FoxP3(-) CD4 T cells in the absence of exogenous cytokines. The preferential expansion of Foxp3(+) T cells is further enhanced by a partial blockade of class II MHC-TCR interaction but diminished by stimulatory anti-CD28 Ab or at high B to T cell ratios. Gamma irradiation of B cells selectively abrogates their ability to expand isolated CD25(+) but not CD25(-) CD4 T cells; exogenous IL-2 supplement can partially restore this function. B cell-expanded CD25(+) T cells express high levels of FoxP3 and are highly inhibitory in an Ag-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号