共查询到20条相似文献,搜索用时 0 毫秒
1.
van den Broeke LJ van Roosmalen D Dohmen-Speelmans MP Dietz CH van der Wielen LA Keurentjes JT 《Biotechnology and bioengineering》2006,93(2):355-360
Partitioning of proteins has been studied experimentally in a system combining a gel-bead phase and a nonionic micellar phase. The micellar phase consists of cylindrically shaped micelles, which are completely excluded from the gel-bead phase. Partitioning of single-component protein solutions (myoglobin, ovalbumin, and BSA) is determined by excluded-volume interactions in the micellar phase, and as a result the proteins prefer the gel-bead phase to the micellar phase. The protein concentration inside the gel beads increases with an increase in volume fraction of the micelles and increases with an increase in the size of the proteins. The protein partition coefficients obtained for a binary mixture of myoglobin and bovine serum albumin (BSA) show the same protein concentration dependence as the single-component protein partition coefficients. 相似文献
2.
3.
Ciara Kyne Brian Ruhle Virginie W. Gautier Peter B. Crowley 《Protein science : a publication of the Protein Society》2015,24(3):310-318
Protein characterization in situ remains a major challenge for protein science. Here, the interactions of ΔTat‐GB1 in Escherichia coli cell extracts were investigated by NMR spectroscopy and size exclusion chromatography (SEC). ΔTat‐GB1 was found to participate in high molecular weight complexes that remain intact at physiologically‐relevant ionic strength. This observation helps to explain why ΔTat‐GB1 was not detected by in‐cell NMR spectroscopy. Extracts pre‐treated with RNase A had a different SEC elution profile indicating that ΔTat‐GB1 predominantly interacted with RNA. The roles of biological and laboratory ions in mediating macromolecular interactions were studied. Interestingly, the interactions of ΔTat‐GB1 could be disrupted by biologically‐relevant multivalent ions. The most effective shielding of interactions occurred in Mg2+‐containing buffers. Moreover, a combination of RNA digestion and Mg2+ greatly enhanced the NMR detection of ΔTat‐GB1 in cell extracts. 相似文献
4.
Rangel-Yagui CO Lam H Kamei DT Wang DI Pessoa A Blankschtein D 《Biotechnology and bioengineering》2003,82(4):445-456
The enzyme glucose-6-phosphate dehydrogenase (G6PD) plays an important role in maintaining the level of NADPH and in producing pentose phosphates for nucleotide biosynthesis. It is also of great value as an analytical reagent, being used in various quantitative assays. In searching for new strategies to purify this enzyme, the partitioning of G6PD in two-phase aqueous mixed (nonionic/cationic) micellar systems was investigated both experimentally and theoretically. Our results indicate that the use of a two-phase aqueous mixed micellar system composed of the nonionic surfactant C(10)E(4) (n-decyl tetra(ethylene oxide)) and the cationic surfactant C(n)TAB (alkyltrimethylammonium bromide, n = 8, 10, or 12) can improve significantly the partitioning behavior of G6PD relative to that obtained in the two-phase aqueous C(10)E(4) micellar system. This improvement can be attributed to electrostatic attractions between the positively charged mixed (nonionic/cationic) micelles and the net negatively charged enzyme G6PD, resulting in the preferential partitioning of G6PD to the top, mixed micelle-rich phase of the two-phase aqueous mixed micellar systems. The effect of varying the cationic surfactant tail length (n = 8, 10, and 12) on the denaturation and partitioning behavior of G6PD in the C(10)E(4) /C(n)TAB/buffer system was investigated. It was found that C(8)TAB is the least denaturing to G6PD, followed by C(10)TAB and C(12)TAB. However, the C(10)E(4)/C(12)TAB/buffer system generated stronger electrostatic attractions with the net negatively charged enzyme G6PD than the C(10)E(4)/C(10)TAB/buffer and the C(10)E(4)/C(8)TAB/buffer systems, when using the same amount of cationic surfactant. Overall, the two-phase aqueous mixed (C(10)E(4)/C(10)TAB) micellar system yielded the highest G6PD partition coefficient of 7.7, with a G6PD yield in the top phase of 71%, providing the optimal balance between the denaturing effect and the electrostatic attractions for the three cationic surfactants examined. A recently developed theoretical framework to predict protein partition coefficients in two-phase aqueous mixed (nonionic/ionic) micellar systems was implemented, and the theoretically predicted G6PD partition coefficients were found to be in reasonable quantitative agreement with the experimentally measured ones. 相似文献
5.
Fee CJ 《Biotechnology and bioengineering》2003,82(2):200-206
A new, widely applicable process that combines reaction and separation in a single unit operation is described. The process, size-exclusion reaction chromatography (SERC), simultaneously allows control of the extent of reactions in which molecular size is altered and the separation of products and reactants. In SERC, a moving reaction zone is formed by injection of reactants onto a size-exclusion chromatography column. Reactants and products are partitioned differently within the mobile phase, resulting in different linear flow rates through the column. The products are therefore removed selectively from the reaction zone, minimizing their residence time in the reaction zone and allowing their separation in the downstream section of the column. For reactions such as protein PEGylation, in which successive addition of PEG groups to the protein results in significant molecular size increases, SERC potentially offers a method by which a dominant final PEGylated protein size can be produced at high yield. The SERC PEGylation of two model proteins, alpha-lactalbumin and beta-lactoglobulin, is demonstrated and results show that simultaneous reaction and separation was obtained. 相似文献
6.
7.
Mazzola PG Lam H Kavoosi M Haynes CA Pessoa A Penna TC Wang DI Blankschtein D 《Biotechnology and bioengineering》2006,93(5):998-1004
Green fluorescent protein (GFP) has been proposed as an ideal choice for a protein-based biological indicator for use in the validation of decontamination or disinfection treatments. In this article, we present a potentially scalable and cost-effective way to purify recombinant GFP, produced by fermentation in Escherichia coli, by affinity-enhanced extraction in a two-phase aqueous micellar system. Affinity-enhanced partitioning, which improves the specificity and yield of the target protein by specific bioaffinity interactions, has been demonstrated. A novel affinity tag, family 9 carbohydrate-binding module (CBM9) is fused to GFP, and the resulting fusion protein is affinity-extracted in a decyl beta-D-glucopyranoside (C10G1) two-phase aqueous micellar system. In this system, C10G1 acts as phase forming and as affinity surfactant. We will further demonstrate the implementation of this concept to attain partial recovery of affinity-tagged GFP from a clarified E. coli cell lysate, including the simultaneous removal of other contaminating proteins. The cell lysate was partitioned at three levels of dilution (5x, 10x, and 40x). Irrespective of the dilution level, CBM9-GFP was found to partition preferentially to the micelle-rich phase, with the same partition coefficient value as that found in the absence of the cell lysate. The host cell proteins from the cell lysate were found to partition preferentially to the micelle-poor phase, where they experience less excluded-volume interactions. The demonstration of proof-of-principle of the direct affinity-enhanced extraction of CBM9-GFP from the cell lysate represents an important first step towards developing a cost-effective separation method for GFP, and more generally, for other proteins of interest. 相似文献
8.
Ciara Kyne Kiara Jordon Dana I. Filoti Thomas M. Laue Peter B. Crowley 《Protein science : a publication of the Protein Society》2017,26(2):258-267
Decades of dilute‐solution studies have revealed the influence of charged residues on protein stability, solubility and stickiness. Similar characterizations are now required in physiological solutions to understand the effect of charge on protein behavior under native conditions. Toward this end, we used free boundary and native gel electrophoresis to explore the charge of cytochrome c in buffer and in Escherichia coli extracts. We find that the charge of cytochrome c was ~2‐fold lower than predicted from primary structure analysis. Cytochrome c charge was tuned by sulfate binding and was rendered anionic in E. coli extracts due to interactions with macroanions. Mutants in which three or four cationic residues were replaced with glutamate were charge‐neutral and “inert” in extracts. A comparison of the interaction propensities of cytochrome c and the mutants emphasizes the role of negative charge in stabilizing physiological environments. Charge–charge repulsion and preferential hydration appear to prevent aggregation. The implications for molecular organization in vivo are discussed. 相似文献
9.
M. P. Byrne W. E. Stites 《Protein science : a publication of the Protein Society》1995,4(12):2545-2558
Nine single substitution cysteine mutants of staphylococcal nuclease (nuclease) were preferentially crosslinked at the introduced cysteine residues using three different bifunctional crosslinking reagents; 1,6-bismaleimidohexane (BMH), 1,3-dibromo-2-propanol (DBP), and the chemical warfare agent, mustard gas (bis(2-chloroethyl)sulfide; mustard). BMH and mustard gas are highly specific reagents for cysteine residues, whereas DBP is not as specific. Guanidine hydrochloride (GuHCl) denaturations of the resulting dimeric proteins exhibited biphasic unfolding behavior that did not fit the two-state model of unfolding. The monofunctional reagent, epsilon-maleimidocaproic acid (MCA), was used as a control for the effects of alkylation. Proteins modified with MCA unfolded normally, showing that this unusual unfolding behavior is due to crosslinking. The data obtained from these crosslinked dimers was fitted to a three-state thermodynamic model of two successive transitions in which the individual subunits cooperatively unfold. These two unfolding transitions were very different from the unfolding of the monomeric protein. These differences in unfolding behavior can be attributed in large part to changes in the denatured state. In addition to GuHCl titrations, the crosslinked dimers were also thermally unfolded. In contrast to the GuHCl denaturations, analysis of this data fit a two-state model well, but with greatly elevated van't Hoff enthalpies in many cases. However, clear correlations between the thermal and GuHCl denaturations exist, and the differences in thermal unfolding can be rationalized by postulating interactions of the denatured crosslinked proteins. 相似文献
10.
Lewit-Bentley A Réty S Sopkova-de Oliveira Santos J Gerke V 《Cell biology international》2000,24(11):799-802
Several annexins have been shown to bind proteins that belong to the S100 calcium-binding protein family. The two best-characterized complexes are annexin II with p11 and annexin I with S100C, the former of which has been implicated in membrane fusion processes. We have solved the crystal structures of the complexes of p11 with annexin II N-terminus and of S100C with annexin I N-terminus. Using these structural results, as well as electron microscopy observations of liposome junctions formed in the presence of such complexes (Lambert et al., 1997 J Mol Biol 272, 42-55), we propose a computer generated model for the entire annexin II/p11 complex. 相似文献
11.
Lam H Kavoosi M Haynes CA Wang DI Blankschtein D 《Biotechnology and bioengineering》2005,89(4):381-392
Liquid-liquid extraction in two-phase aqueous complex-fluid systems has been proposed as a scalable, versatile, and cost-effective purification method for the downstream processing of biotechnological products. In the case of two-phase aqueous micellar systems, careful choices of the phase-forming surfactants or surfactant mixtures allow these systems to separate biomolecules based on size, hydrophobicity, charge, or specific affinity. In this article, we investigate the affinity-enhanced partitioning of a model affinity-tagged protei--green fluorescent protein fused to a family 9 carbohydrate-binding module (CBM9-GFP)--in a two-phase aqueous micellar system generated from the nonionic surfactant n-decyl beta-D-glucopyranoside (C10G1), which acts simultaneously as the phase-former and the affinity ligand. In this simple system, CBM9-GFP was extracted preferentially into the micelle-rich phase, despite the opposing tendency of the steric, excluded-volume interactions operating between the protein and the micelles. We obtained more than a sixfold increase (from 0.47 to 3.1) in the protein partition coefficient (Kp), as compared to a control case where the affinity interactions were \"turned off\" by the addition of a competitive inhibitor (glucose). It was demonstrated conclusively that the observed increase in Kp can be attributed to the specific affinity between the CBM9 domain and the affinity surfactant C10G1, suggesting that the method can be generally applied to any CBM9-tagged protein. To rationalize the observed phenomenon of affinity-enhanced partitioning in two-phase aqueous micellar systems, we formulated a theoretical framework to model the protein partition coefficient. The modeling approach accounts for both the excluded-volume interactions and the affinity interactions between the protein and the surfactants, and considers the contributions from the monomeric and the micellar surfactants separately. The model was shown to be consistent with the experimental data, as well as with our current understanding of the CBM9 domain. 相似文献
12.
A new nonionic reverse micellar system is developed by blending two nonionic surfactants, Triton X‐45 and Span 80. At total surfactant concentrations lower than 60 mmol/L and molar fractions of Triton X‐45 less than 0.6, thermodynamically stable reverse micelles of water content (W0) up to 30 are formed. Di(2‐ethylhexyl) phosphoric acid (HDEHP; 1–2 mmol/L) is introduced into the system for chelating transition metal ions that have binding affinity for histidine‐rich proteins. HDEHP exists in a dimeric form in organic solvents and a dimer associated with one transition metal ion, including copper, zinc, and nickel. The copper‐chelate reverse micelles (Cu‐RM) are characterized for their W0, hydrodynamic radius (Rh), and aggregation number (Nag). Similar with reverse micelles of bis‐2‐ethylhexyl sodium sulfosuccinate (AOT), Rh of the Cu‐RM is also linearly related to W0. However, Nag is determined to be 30–90 at W0 of 5–30, only quarter to half of the AOT reverse micelles. Then, selective metal‐chelate extraction of histidine‐rich protein (myoglobin) by the Cu‐RM is successfully performed with pure and mixed protein systems (myoglobin and lysozyme). The solubilized protein can be recovered by stripping with imidazole or ethylinediaminetetraacetic acid (EDTA) solution. Because various transition metal ions can be chelated to the reverse micelles, it is convinced that the system would be useful for application in protein purification as well as simultaneous isolation and refolding of recombinant histidine‐tagged proteins expressed as inclusion bodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
13.
生物大分子的液_固色谱纯化过程中固相载体会产生产物吸附、变性等不良影响。高速逆流色谱无需固相载体 ,且具有高分便率和高回收率的优点 ,其中有机相 水相体系在分离天然产物中应用广泛 ,而应用双水相体系分离生物大分子尚处于研究阶段。双水相高速逆流色谱体系的建立与仪器设备及操作工艺条件密切相关 ,因此利用多分离柱高速逆流色谱仪 ,研究了PEG1000-无机盐双水相体系对标准蛋白质混合物以及卵白蛋白的分离。pH值和PEG浓度对不同种类蛋白质的分配系数影响不同 ,实验发现在pH9.2的150% (W/W)PEG1000 170% (W/W)磷酸钾盐体系中 ,细胞色素C、溶菌酶和肌红蛋白的分配系数差异较大 ,且分布合理 ,因而采用该体系在 0 8mL min流速 ,85 0r min转速的条件下 ,成功分离了细胞色素C、溶菌酶和肌红蛋白的混合物。实验也发现在pH9 2的 16 0 % (W/W)PEG10 0 0 17 0 % (W/W)磷酸钾盐体系中 ,鸡蛋清样品中的主要蛋白质成分:卵转铁蛋白、卵白蛋白和溶菌酶的分配系数差异最大 ,因而采用该体系在 1 8mL min流速、85 0r mi转速的条件下,200min内从鸡蛋清样品中成功分离卵白蛋白,其电泳纯度为100%,收率为95%. 相似文献
14.
Interaction discovery methods, such as the two-hybrid system and affinity purification, suggest thousands of protein–protein interactions. Structural biology provides atomic details for many interactions but, to date, there has been limited discussion of how these two fields complement each other. Here, we apply a structural perspective to interpret interactions discovered by different techniques. This perspective reveals indirect interactions in two-hybrid systems, instances where molecular labels might obstruct interfaces, and possible explanations for why certain promiscuous proteins interact with many others. It also highlights that some methods favour tight complexes whereas others favour interactions of a more transient nature. We conclude by discussing how a combination of interaction discovery and structural biology will enhance our understanding of complex cellular processes. 相似文献
15.
Partitioning of a macromolecule into the interfacial volume occupied by a grafted polymer brush decreases the configurational entropy (DeltaSbrush(c)) of the terminally attached linear polymer chains due to a loss of free volume. Self-consistent field theory (SCF) calculations are used to show that DeltaSbrush(c) is a strong function of both the size (MWp) of the partitioning macromolecule and the depth of penetration into the brush volume. We further demonstrate that the strong dependence of DeltaSbrush(c) on MWp provides a novel and powerful platform, which we call entropic interaction chromatography (EIC), for efficiently separating mixtures of proteins on the basis of size. Two EIC columns, differing primarily in polymer grafting density, were prepared by growing a brush of poly(methoxyethyl acrylamide) chains on the surface of a wide-pore (1,000-A pores, 64-microm diameter rigid beads) resin (Toyopearl AF-650M) bearing surface aldehyde groups. Semipreparative 0.1-L columns packed with either EIC resin provide reduced-plate heights of 2 or less for efficient separation of globular protein mixtures over at least three molecular-weight decades. Protein partitioning within these wide-pore EIC columns is shown to be effectively modeled as a thermodynamically controlled process, allowing partition coefficients (K(P)) and elution chromatograms to be accurately predicted using a column model that combines SCF calculation of K(P) values with an equilibrium-dispersion type model of solute transport through the column. This model is used to explore the dependence of column separation efficiency on brush properties, predicting that optimal separation of proteins over a broad MWp range is achieved at low to moderate grafting densities and intermediate chain lengths. 相似文献
16.
The amendment of the interpretation of recently published size‐exclusion chromatography (SEC) data for A‐kinase anchoring protein (AKAP12) on Sephacryl‐S400 has led to an increase in the estimated size of the supermolecular state from 840 to at least 6000 kDa. Although size‐exclusion chromatography has sufficed to demonstrate unequivocally the existence of this 190‐kDa scaffold protein in a supermolecular state, any quantitative estimate of the oligomer stoichiometry is shown to be precluded by failure of this empirical procedure to incorporate allowance for any deviation from globular shape—an important consideration in view of the extended structures exhibited by other extracellular matrix proteins. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
Jae-Hwa?Lee Nguyen-Hoang?Loc Tae-Ho?Kwon Moon-Sik?Yang "author-information "> "author-information__contact u-icon-before "> "mailto:mskyang@moak.chonbuk.ac.kr " title= "mskyang@moak.chonbuk.ac.kr " itemprop= "email " data-track= "click " data-track-action= "Email author " data-track-label= " ">Email author 《Biotechnology and Bioprocess Engineering》2004,9(1):12-16
Partitioning of human granulocyte-macrophage colony stimulating factor (hGM-CSF) was achieved in the aqueous two-phase systems (ATPSs) using a crude extract of transgenic tobacco cell suspension culture. This study examined the effects of polyethylene glycol (PEG) molecular weight and concentration and the effects of sodium phosphate concentration in different PEG/sodium phosphate systems on the partition coefficient,K. The best ATPS system was 5% PEG 8,000/1.6 M sodium phosphate after 2 h of incubation at room temperature. In this system, hGM-CSF was partitioned in the PEG-rich phase with a yield of 57.99% andK hGM-CSF of 8.12. In another system, 3% PEG 10,000/1.6 M sodium phosphate, hGM-CSF was also partitioned primarily in the top phase with a yield of 45.66% andK hGM-CSF of 7.64 after 2 h of incubation at room temperature. 相似文献
18.
Giuseppe Graziano 《Biopolymers》2015,103(12):711-718
The model developed for cold denaturation (Graziano, PCCP 2010, 12, 14245‐14252) is extended to rationalize the dependence of protein conformational stability upon hydrostatic pressure, at room temperature. A pressure− volume work is associated with the process of cavity creation for the need to enlarge the liquid volume against hydrostatic pressure. This contribution destabilizes the native state that has a molecular volume slightly larger than the denatured state due to voids existing in the protein core. Therefore, there is a hydrostatic pressure value at which the pressure−volume contribution plus the conformational entropy loss of the polypeptide chain are able to overwhelm the stabilizing gain in translational entropy of water molecules, due to the decrease in water accessible surface area upon folding, causing denaturation. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 711–718, 2015. 相似文献
19.
Katelyn E. Connelly Victoria Hedrick Tiago Jose Paschoal Sobreira Emily C. Dykhuizen Uma K. Aryal 《Proteomics》2018,18(11)
Analysis of protein complexes provides insights into how the ensemble of expressed proteome is organized into functional units. While there have been advances in techniques for proteome‐wide profiling of cytoplasmic protein complexes, information about human nuclear protein complexes are very limited. To close this gap, we combined native size exclusion chromatography (SEC) with label‐free quantitative MS profiling to characterize hundreds of nuclear protein complexes isolated from human glioblastoma multiforme T98G cells. We identified 1794 proteins that overlapped between two biological replicates of which 1244 proteins were characterized as existing within stably associated putative complexes. co‐IP experiments confirmed the interaction of PARP1 with Ku70/Ku80 proteins and HDAC1 (histone deacetylase complex 1) and CHD4. HDAC1/2 also co‐migrated with various SIN3A and nucleosome remodeling and deacetylase components in SEC fractionation including SIN3A, SAP30, RBBP4, RBBP7, and NCOR1. Co‐elution of HDAC1/2/3 with both the KDM1A and RCOR1 further confirmed that these proteins are integral components of human deacetylase complexes. Our approach also demonstrated the ability to identify potential moonlighting complexes and novel complexes containing uncharacterized proteins. Overall, the results demonstrated the utility of SEC fractionation and LC–MS analysis for system‐wide profiling of proteins to predict the existence of distinct forms of nuclear protein complexes. 相似文献
20.
Michelle T. Dohm Shannon L. Seurynck‐Servoss Jiwon Seo Ronald N. Zuckermann Annelise E. Barron 《Peptide Science》2009,92(6):538-553
A family of peptoid dimers developed to mimic SP‐B is presented, where two amphipathic, cationic helices are linked by an achiral octameric chain. SP‐B is a vital therapeutic protein in lung surfactant replacement therapy, but its large‐scale isolation or chemical synthesis is impractical. Enhanced biomimicry of SP‐B's disulfide‐bonded structure has been previously attempted via disulfide‐mediated dimerization of SP‐B1‐25 and other peptide mimics, which improved surface activity relative to the monomers. Herein, the effects of disulfide‐ or “click”‐mediated (1,3‐dipolar cycloaddition) dimerization, as well as linker chemistry, on the lipid‐associated surfactant activity of a peptoid monomer are described. Results revealed that the ‘clicked’ peptoid dimer enhanced in vitro surface activity in a DPPC:POPG:PA lipid film relative to its disulfide‐bonded and monomeric counterparts in both surface balance and pulsating bubble surfactometry studies. On the pulsating bubble surfactometer, the film containing the “clicked” peptoid dimer outperformed all presented peptoid monomers and dimers, and two SP‐B derived peptides, attaining an adsorbed surface tension of 22 mN m−1, and maximum and minimum cycling values of 42 mN m−1 and near‐zero, respectively. © 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 538–553, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献