首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schlag EM  McIntosh MS 《Phytochemistry》2006,67(14):1510-1519
The contents of five ginsenosides (Rg1, Re, Rb1, Rc and Rd) were measured in American ginseng roots collected from 10 populations grown in Maryland. Ginsenoside contents and compositions varied significantly among populations and protopanaxatriol (Rg1 and Re) ginsenosides were inversely correlated within root samples and among populations. The most abundant ginsenoside within a root and by population was either Rg1 or Re, followed by Rb1. Ginseng populations surveyed grouped into two chemotypes based on the relative compositions of Rg1 and Re. Four populations, including the control population in which plants were grown from TN and WI seed sources, contained roots with the recognized chemotype for American ginseng of low Rg1 composition relative to Re. The remaining 6 populations possessed roots with a distinctive chemotype of high relative Rg1 to Re compositions. Chemotype did not vary by production type (wild versus cultivated) and roots within a population rarely exhibited chemotypes different from the overall population chemotype. These results provide support for recent evidence that relative Rg1 to Re ginsenoside contents in American ginseng roots vary by region and that these differences are likely influenced more by genotype than environmental factors. Because the physiological and medicinal effects of different ginsenosides differ and can even be oppositional, our findings indicate the need for fingerprinting ginseng samples for regulation and recommended usage. Also, the High Rg1/Low Re chemotype discovered in MD could potentially be used therapeutically for coronary health based on recent evidence of the positive effects of Rg1 on vascular growth.  相似文献   

2.
Ginsenosides are the major constituent that is responsible for the health effects of American ginseng. The ginsenoside profile of wild American ginseng is ultimately the result of germplasm, climate, geography, vegetation species, water, and soil conditions. This is the first report to address the ginsenoside profile of wild American ginseng grown in Tennessee (TN), the third leading state for production of wild American ginseng. In the present study, ten major ginsenosides in wild American ginseng roots grown in TN, including Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, and Rg3, were determined simultaneously. The chemotypic differences among TN wild ginseng, cultivated American ginseng, and Asian ginseng were assessed based on the widely used markers of ginsenoside profiling, including the top three ginsenosides, ratios of PPD/PPT, Rg1/Rb1, Rg1/Re, and Rb2/Rc. Our findings showed marked variation in ginsenoside profile for TN wild ginseng populations. Nevertheless, TN wild ginseng has significant higher ginsenoside content and more ginsenoside diversity than the cultivated ginseng. The total ginsenoside content in TN wild ginseng, as well as ginsenosides Rg1 and Re, increases with the age of the roots. Marked chemotypic differences between TN wild ginseng and cultivated American ginseng were observed based on the chemotypic markers. Surprisingly, we found that TN wild ginseng is close to Asian ginseng with regard to these characteristics in chemical composition. This study verified an accessible method to scientifically elucidate the difference in chemical constituents to distinguish wild from the cultivated American ginseng. This work is critical for the ecological and biological assessments of wild American ginseng so as to facilitate long‐term sustainability of the wild population.  相似文献   

3.
The contents of ginsenosides in Panax ginseng not only vary in different parts of the root, but also exhibit yearly variation. In this study, an HPLC-MS method was established in order to simultaneously analyse ginsenosides Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1 and Rg2. The concentration of ginsenosides in the tap root and root fibre were compared and the yearly variations of nine ginsenosides elucidated. The results indicate that the total content of ginsenosides in the main root and the root fibre both attain a maximum level in the fourth year of growth, although the amount in the former is much higher than in the latter. The variation in the content of ginsenosides during a 2-6 year period suggests that cultivated P. Ginseng can be harvested after the fourth year. The current results will provide useful information for the quality control and good agricultural practice farming of ginseng.  相似文献   

4.
Ginseng saponins (ginsenosides) were isolated from soil associated with the roots of commercially grown American ginseng (Panax quinquefolius L.), identified via LC-MS and quantified via analytical HPLC. The ginsenosides, including F(11), Rb(1), Rb(2), Rc, Rd, Re and Rg(1), represented between 0.02 and 0.098% (average 0.06%) of the mass of the soil collected from roots annually between 1999 and 2002. The same ginsenosides were also isolated from run-off of undisturbed plants grown in pots in a greenhouse using a root exudate trapping system. To investigate (1) whether these saponins could influence the growth of pythiaceous fungi pathogenic to ginseng, and (2) whether soil levels of ginsenosides were sufficient to account for any effects, bioassays were completed using a crude saponin extract and an ecologically relevant concentration of purified ginsenosides. Thus, when cultured on media containing crude saponins, the colony weight of both Phytophthora cactorum and Pythium irregulare was significantly greater than that of control, indicating a strong growth stimulation by ginsenosides. The growth of Pythium irregulare was also significantly stimulated after addition of an ecologically relevant, low concentration (i.e. 0.06%) of purified ginsenosides to culture medium. By contrast, growth of the saprotrophic fungus Trichoderma hamatum was slightly (but not significantly) inhibited under the same conditions. These results imply that ginsenosides can act as allelopathic stimulators of the growth of pythiaceous fungi in the rhizosphere, and this may contribute to the disease(s) of this crop.  相似文献   

5.
Quantitative comparison of seven ginsenosides in wild and cultivated American ginseng revealed that the Rg1/Rd ratio presented a significantly large difference between cultivated and type‐I (one of the defined chemotypes) wild American ginseng, facilitating this ratio as a characteristic marker for differentiating these two groups. Similarly, the ratio (Rg1+Re)/Rd, and the ratio of protopanaxatriol (PPT)‐type ginsenosides to protopanaxadiol (PPD)‐type ginsenosides showed a large difference between these two groups. On the other hand, type‐II wild samples were found to have high Rg1/Rb1 and Rg1/Re ratios and low panaxydol/panaxynol ratio, which is entirely different from Type‐I American ginseng, but is very similar to that of Asian ginseng. This not only suggests that the chemotype should be taken into consideration properly when using these parameters for differentiating American and Asian ginseng, but also indicates that type‐II wild American ginseng may have distinct pharmacological activities and therapeutic effects.  相似文献   

6.
人参皂苷与生态因子的相关性   总被引:5,自引:0,他引:5  
环境条件影响中药材活性成分的形成和积累.利用各种数学统计分析方法探讨影响人参皂苷积累的生态因子,提高人参品质.人参样品采自人参道地产区(主产区)吉林、辽宁、黑龙江三省5年生栽培人参,同时采集采样点处的土壤样品.超高效液相(UPLC)色谱法分析了不同产区9种人参皂苷(Rg1、Re、Rf、Rg2、Rb1、Rc、Rb2、Rb3、Rd)的含量;利用“中药材产地适宜性分析地理信息系统”的生态因子空间数据库,获得采样区包括温度、水分、光照等10个生态因子数据;按土壤理化性质常规方法测定土壤样品中的有效硼、有效铁等微量元素和速效氮、速效钾等有效养分.对人参有效成分含量与土壤养分进行典型相关性分析发现,土壤中的有效硼、有效铁、速效氮与人参皂苷含量呈显著正相关,即适当提高土壤中有效硼、有效铁和速效氮的含量可以促进人参皂苷成分的积累,土壤水分与所测人参皂苷含量(Rb3除外)呈显著正相关,速效磷(P)、pH、速效锌(Zn)与各人参皂苷含量呈弱相关;人参皂苷与气候因子相关分析表明,温度(年活动积温、年平均气温、7月最高气温、7月平均气温、1月最低气温、1月平均气温)与人参皂苷含量呈显著负相关,其中与药典中人参含量测定项下的人参皂苷Rg1、Re、Rb1负相关尤为显著(r>0.6),说明在一定温度范围内,人参皂苷是随着温度的降低而升高的,即适当低温有利于人参皂苷有效成分的积累;海拔与人参皂苷Rc、Rb2、Rb3含量呈显著正相关(r>0.6),即相对较高的海拔可以促进这3种成分的积累;而年均降水量、年相对湿度和年均日照时数与人参皂苷相关不显著.通过主成分分析(PCA)、典型相关分析、排序等统计方法,考察不同产地样品中人参皂苷含量与生态因子间的相关性,研究结果揭示了温度在人参的主要活性成分-皂苷类形成中起决定性作用,在一定的温度范围内,温度越低越有利于人参皂苷的积累;阐明了土壤中的有效硼、有效铁、速效氮与人参皂苷含量成正相关.研究结果提示在人参实践生产中可以通过适当低温处理,增施硼、铁、氮肥等农艺措施来调控人参皂苷含量.  相似文献   

7.
Most of the known pharmacological effects of Panax ginseng on the central nervous system are due to its major components - ginsenosides. Although the antioxidant ability of ginseng root has already been established, this activity has never been evaluated for isolated ginsenosides on astrocytes. The activity of protopanaxadiols Rb(1), Rb(2), Rc and Rd, and protopanaxatriols Re and Rg(1) was evaluated in vitro on astrocytes primary culture by means of an oxidative stress model with H(2)O(2). The viability of astrocytes was determined by the MTT reduction assay and by the LDH release into the incubation medium. The effects on the antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidases (GPx) and glutathione reductase (GR) and on the intracellular reactive oxygen species (ROS) formation were also investigated. Exposure of astrocytes to H(2)O(2) decreased cell viability as well as the antioxidant enzymes activity and increased ROS formation. Oxidative stress produced significant cell death that was reduced by previous treatment with the tested ginsenosides. Ginsenosides Rb(1), Rb(2), Re and Rg(1) were effective in reducing astrocytic death, while Rb(1), Rb(2), Rd, Re and Rg(1) decreased ROS formation, ginsenoside Re being the most active. Ginsenosides from P. ginseng induce neuroprotection mainly through activation of antioxidant enzymes.  相似文献   

8.
MethodsThe autotoxicities were measured using seedling emergence bioassays and root cell vigor staining. The ginsenosides in the roots, soils, and root exudates were identified with HPLC-MS.ResultsThe seedling emergence and survival rate decreased significantly with the continuous number of planting years from one to three years. The root exudates, root extracts, and extracts from consecutively cultivated soils also showed significant autotoxicity against seedling emergence and growth. Ginsenosides, including R1, Rg1, Re, Rb1, Rb3, Rg2, and Rd, were identified in the roots and consecutively cultivated soil. The ginsenosides, Rg1, Re, Rg2, and Rd, were identified in the root exudates. Furthermore, the ginsenosides, R1, Rg1, Re, Rg2, and Rd, caused autotoxicity against seedling emergence and growth and root cell vigor at a concentration of 1.0 µg/mL.ConclusionOur results demonstrated that autotoxicity results in replant failure of Sanqi ginseng. While Sanqi ginseng consecutively cultivated, some ginsenosides can accumulate in rhizosphere soils through root exudates or root decomposition, which impedes seedling emergence and growth.  相似文献   

9.
Yousef LF  Bernards MA 《Phytochemistry》2006,67(16):1740-1749
The role of ginseng saponins (ginsenosides) as modulators or inhibitors of disease is vague, but our earlier work supports the existence of an allelopathic relationship between ginsenosides and soilborne microbes. Interestingly, this allelopathy appears to significantly promote the growth of the important ginseng pathogen, Pythium irregulare while inhibiting that of an antagonistic non-pathogenic fungus, Trichoderma hamatum. Herein we report on the apparent selective metabolism of 20(S)-protopanaxadiol ginsenosides by an extracellular glycosidase from P. irregulare. Thus, when P. irregulare was cultured in the presence of a purified (> 90%) ginsenoside mixture, nearly all of the 20(S)-protopanaxadiol ginsenosides (Rb1, Rb2, Rc, Rd, and to a limited extent G-XVII) were metabolized into the minor ginsenoside F2, at least half of which appears to be internalized by the organism. No metabolism of the 20(S)-protopanaxatriol ginsenosides (Rg1 and Re) was evident. By contrast, none of the ginsenosides added to the culture medium of the non-pathogenic fungus T. hamatum were metabolized. The metabolism of 20(S)-protopanaxadiol ginsenosides by P. irregulare appears to occur through the hydrolysis of terminal monosaccharide units from disaccharides present at C-3 and/or C-20 of ginsenosides Rb1, Rc, Rb2, Rd and G-XVII to yield one major product, ginsenoside F2 and one minor product (possibly G-III). A similar transformation of ginsenosides was observed using a crude protein preparation isolated from the spent medium of P. irregulare cultures.  相似文献   

10.
To increase the contents of medicinally effective ginsenosides, we used high-temperature and high-pressure thermal processing of ginseng by exposing it to microwave irradiation. To determine the anti-melanoma effect, the malignant melanoma SK-MEL-2 cell line was treated with an extract of microwave-irradiated ginseng. Microwave irradiation caused changes in the ginsenoside contents: the amounts of ginsenosides Rg1, Re, Rb1, Rb2, Rc, and Rd were disappeared, while those of less polar ginsenosides, such as Rg3, Rg5, and Rk1, were increased. In particular, the contents of Rk1 and Rg5 markedly increased. Melanoma cells treated with the microwave-irradiated ginseng extract showed markedly increased cell death. The results indicate that the microwave-irradiated ginseng extract induced melanoma cell death via the apoptotic pathway and that the cytotoxic effect of the microwave-irradiated ginseng extract is attributable to the increased contents of specific ginsenosides.  相似文献   

11.
Rg3 and Rh2 ginsenosides are primarily found in Korean red ginseng root (Panax ginseng C.A. Meyer) and valued for their bioactive properties. We quantified both Rh2 and Rg3 ginseng leaf and Rg3 from root extracts derived from North American ginseng (Panax quinquefolius). Quantification was obtained by application of HPLC with ion fragments detected using ESI-MS. Ginseng leaf contained 11.3+/-0.5 mg/g Rh2 and 7.5+/-0.9 mg/g Rg3 in concentrated extracts compared to 10.6+/-0.4 mg/g Rg3 in ginseng root. No detectable Rh2 was found in root extracts by HPLC, although it was detectable by ESI-MS analysis. Ginsenosides Rg3 and Rh2 were detected following hot water reflux extraction, but not from tissues extracted with 80% aqueous ethanol at room temperature. Therefore ginsenosides Rg3 and Rh2 are not naturally present in North American ginseng, but are products of a thermal process. Using ESI-MS analysis, it was found that formation of Rg3 and Rh2, among other compounds, were a function of heating time and were breakdown products of the more abundant ginsenosides Rb1 and Rc. Our findings that heat processed North American ginseng leaf is an excellent source of Rh2 ginsenoside is an important discovery considering that ginseng leaf material is obtainable throughout the entire plant cycle for recovery of valuable ginsenosides for pharmaceutical use.  相似文献   

12.
小型生物反应器内人参不定根的人参皂苷累积   总被引:2,自引:0,他引:2  
对小型生物反应器(3~10 L)培养人参不定根的生长和人参皂苷(Rg1、Re、Rb1)的累积规律,以及蔗糖浓度、初始接种量对其生长和人参皂苷累积的影响进行研究。结果表明:小型生物反应器内人参不定根的最佳收获周期为7周。初始接种量和蔗糖浓度影响生物反应器内人参不定根的生长和人参皂苷的累积,20或40 g/L蔗糖对人参不定根的生长和人参皂苷的累积优于60 g/L蔗糖;5和10 L生物反应器内最佳初始接种量分别为15和30g,其不定根的生长量分别为9.29和19.17 g,人参皂苷含量分别为5.16和4.58 mg/g。生物反应器内培养7周的人参与栽培4年的人参相比,人参皂苷Rg1和Re含量相差不大,但栽培人参中Rb1的含量远高于生物反应器中所培养的人参不定根。  相似文献   

13.
True ginseng roots contain “active compounds” called ginsenosides. The enhanced production of useful bioactive ginsenosides by high‐density cell cultures of Panax notoginseng in a self‐developed centrifugal impeller bioreactor (CIB) was achieved by adding methyl jasmonic acid (MJA) during cultivation. The production of the major, individual ginsenosides Rg1, Re and Rb1 was significantly enhanced in both 3‐L and 30‐L CIBs. The production titer of Rg1, Re and Rb1 ginsenosides in the 30‐L CIB was improved from 42 ± 8, 42 ± 9 and 41 ± 6 mg/L without MJA elicitation, to 104 ± 6, 71 ± 5 and 95 ± 6 mg/L with MJA elicitation, respectively. The ratio of Rb/Rg was slightly improved by MJA treatment in a 3‐L CIB but no apparent difference was observed in a 30‐L CIB. This work is useful for the understanding of the effects of large‐scale production on the individual ginseng saponins produced by plant cell cultures  相似文献   

14.
Understory light and root ginsenosides in forest-grown Panax quinquefolius   总被引:2,自引:0,他引:2  
The objective of this study was to determine the relationship between light levels in the understory of a broadleaf forest and the content of six ginsenosides (Rg(1), Re, Rb(1), Rc, Rb(2,) and Rd) in 1- and 2-year-old American ginseng (Panax quinquefolius L.) roots. Our results revealed that ginsenoside contents in 1- and 2 year-old roots collected in September were significantly related to direct and total light levels, and duration of sunflecks. At this time, the effect of light levels accounted for up to 48 and 62% of the variation in ginsenoside contents of 1- and 2-year-old American ginseng roots. Also, red (R) and far red (FR) light, and the R:FR ratio significantly affected Rd, Rc, and Rg(1) contents in 2-year-old roots, accounting for up to 40% of the variation in ginsenoside contents.  相似文献   

15.
Ginsenosides, major active ingredients of Panax ginseng, are known to regulate the excitatory ligand-gated ion channel activity. Recent reports showed that ginsenosides attenuate nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides also affect the inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human glycine alpha1 receptor channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. Treatment of ginsenoside Rf enhances glycine-induced inward peak current (IGly) with dose dependent and reversible manner but ginsenoside Rf itself did not elicit membrane currents. The half-stimulatory concentrations (EC50) of ginsenoside Rf was 49.8 +/- 8.9 microM. Glycine receptor antagonist strychnine completely blocked the inward current elicited by glycine plus ginsenoside Rf. Cl- channel blocker 4,4'-disothiocyanostilbene-2,2'-disulfonic acid (DIDS) also blocked the inward current elicited by glycine plus ginsenoside Rf. We also tested the effect of eight individual ginsenosides (i.e., Rb1, Rb2, Rc, Rd, Re, Rg1, Rg2, and Ro) in addition to ginsenoside Rf. We found that five of them significantly enhanced the inward current induced by glycine with the following order of potency: Rb1 > Rb2 > Rg2 > or = Rc > Rf > Rg1 > Re. These results indicate that ginsenosides might regulate gylcine receptor expressed in Xenopus oocytes and this regulation might be one of the pharmacological actions of Panax ginseng.  相似文献   

16.
云南栽培西洋参皂甙的高压液相色谱定量分析   总被引:6,自引:0,他引:6  
采用N-18ODS柱,以CH_3CN:H_2O(31:69 v/v)中加入50mM KH_2PO_4和CH_3CN:H_2O:H_3PO_4(20:80:0.5 v/v)为流动相,在202 nm紫外吸收波长检测下,测定了云南丽江引种栽培的西洋参中丙二酸人参皂甙(malonyl ginsenoside)Rb_1、Rb_2、Rc、人参皂甙(ginsenosidc)Rb_1、Rb_2、Rc、Rd、Ro和Rc、Rgl等10种主要皂甙的含量,讨论了不同的栽培年代、采收季节、地下部位以及商品等级中皂甙含量的变化,对该地区西洋参的生产提出了建议。  相似文献   

17.
人参皂甙Rb1,Rg1,Re和Rh1对体外培养细胞增殖的影响   总被引:3,自引:0,他引:3  
本研究应用体外培养的人胚肺成纤维细胞(2BS)和人宫颈癌细胞(Hela)为实验模型。在培养液中分别加入人参根总皂甙(SRG)和人参皂甙Rb_1、Rg_1、Re、Rh_1孵育3~7d后,用MTT法和细胞计数法测定细胞的增殖。MTT测定结果表明,Rb_1、Rg_1、Re、Rh_1可以促进衰老细胞的增殖,但对未衰老的细胞增殖没有显著影响,对Hela细胞的增殖有抑制作用。细胞计数法测定结果表明,总皂甙和4种皂甙单体都可以降低Hela细胞的群体增殖率和克隆生长率,其中Re、Rh_1作用显著。同时,增加衰老细胞的群体增殖率和克隆生长率,其中Rb_1和Rg_1作用显著。  相似文献   

18.
Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolium), are thought to be representative plant of Panax species, have important commercial value and are used in worldwide. Panax species produces triterpene saponins called ginsenosides, which are classified into two groups by the skeleton of aglycones, namely dammarane-type and oleanane-type. Dammarane-type ginsenosides dominate over oleanane-type not only in amount but also in structural varieties. Researches shows that the saponins content in American ginseng is higher than that in Asian ginseng, the higher part of ginsenosides is from dammarane-type biosynthesis. It has been proposed that protopanaxadiol derived from dammarenediol-II, is a key hydroxylation by cytochrome P450 for the biosynthesis of ginsenosides, and the gene number of protopanaxadiol synthase has been published independent in Asian ginseng (PgCYP716A47). However, little is known about genes involved in hydroxylation and glycosylation in American ginseng ginsenoside biosynthesis. Here, we first cloned and identified a P450 gene named PqD12H encoding enzymes catalyzed dammarenediol-II to protopanaxadiol by RT-PCR using degenerate primers designed based on sequence homology. In vitro, the ectopic expression of PqD12H in recombinant WAT21 yeast resulted in protopanaxadiol production after dammarenediol-II was added to the culture medium. In vivo, we established both PgCYP716A47 and PqD12H RNAi transgenic. The RT-PCR and HPLC analysis of the final products of protopanaxadiol and protopanaxatriol showed a result that declined level of protopanaxadiol-type and protopanaxatriol-type ginsenosides. It suggested that the P450 synthase content or expression in American ginseng exceed than in Asian ginseng. The result elucidated the evolution relationship of P450s and the reason of different saponins content among Panax species.  相似文献   

19.
Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day?×?3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-? (IFN-?), and interleukin-1β (IL-1β) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (?/?) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (?/?) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (?/?) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.  相似文献   

20.
Ginsenosides, also known as ginseng saponins, are the principal bioactive ingredients of ginseng, which are responsible for its diverse pharmacological activities. The present work aimed to assess skin anti-photoaging properties of ginsenoside Rb2 (Rb2), one of the predominant protopanaxadiol-type ginsenosides, in human epidermal keratinocyte HaCaT cells under UV-B irradiation. When the cultured keratinocytes were subjected to Rb2 prior to UV-B irradiation, Rb2 displayed suppressive activities on UV-B-induced reactive oxygen species elevation and matrix metalloproteinase-2 expression and secretion. However, Rb2 at the used concentrations was unable to modulate cellular survivals in the UV-B-irradiated keratinocytes. In brief, Rb2 possesses a protective role against the photoaging of human keratinocyte cells under UV-B irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号