首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Monoclonal antibodies specific for unsulfated, 4-sulfated, and 6-sulfated disaccharide "stubs" that remain attached to the core protein after chondroitinase ABC digestion of chondroitin/dermatan sulfate proteoglycans have been used to study the localization of chondroitin and the two isomeric chondroitin sulfates in developing rat cerebellum. At 1-2 weeks postnatal, unsulfated chondroitin is present in the granule cell layer, molecular layer, and prospective white matter, but there was no staining of the external granule cell layer other than light staining of Bergmann glia fibers. By 3 weeks postnatal, staining of the molecular layer has disappeared and has diminished in the white matter, whereas in adult cerebellum only the granule cell layer remains stained. The staining pattern of chondroitin 4-sulfate is similar to that for chondroitin at 1-2 weeks postnatal, but in contrast to chondroitin, chondroitin 4-sulfate increases in the molecular layer at 3 weeks, and this becomes the most densely stained region of adult cerebellum. Chondroitin 6-sulfate is present predominantly in the prospective white matter of 1-2 week postnatal cerebellum, although significant staining of the granule cell layer is also seen. By 3 weeks postnatal the granule cell staining of chondroitin 6-sulfate has decreased, and in adult cerebellum staining is seen only in the white matter and to a lesser extent in the granule cell layer. Electron microscopy confirmed the presence of chondroitin sulfate in the cytoplasm of neurons and glia of adult brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Sequence complexity of nuclear RNAs in adult rat tissues   总被引:26,自引:0,他引:26  
D M Chikaraishi  S S Deeb  N Sueoka 《Cell》1978,13(1):111-120
  相似文献   

5.
Abstract: The gene for tryptophan 2,3-dioxygenase (TDO) heretofore was believed to be expressed only in liver. The data presented here demonstrate that RNA encoding TDO is present in rodent brain. Oligonucleotide primers based on the rat liver TDO cDNA sequence were synthesized and used to amplify RNA derived from mouse whole brain and liver and rat brain regions by the RNA-PCR. Reaction products were purified and subjected to DNA sequencing. Identical sequences were obtained when mouse whole brain and liver RNAs were amplified, and these sequences were shown to be 96% identical to the published rat liver tryptophan TDO cDNA sequence. In addition, TDO sequences were found in RNA derived from rat brainstem, cerebellum, cortex, hypothalamus, and the remainder of the brain.  相似文献   

6.
7.
Nucleoside transport processes may play a role in regulating endogenous levels of the inhibitory neuromodulator adenosine in brain. The cDNAs encoding species homologues of one member of the equilibrative nucleoside transporter (ENT) gene family have recently been isolated from rat (rENT1) and human (hENT1) tissues. The current study used RT-PCR, northern blot, in situ hybridization, and [3H]nitrobenzylthioinosine autoradiography to determine the distribution of mRNA and protein for ENT1 in rat and human brain. Northern blot analysis indicated that hENT1 mRNA is widely distributed in adult human brain. 35S-labeled sense and antisense riboprobes, transcribed from a 153-bp segment of rENT1, were hybridized to fresh frozen coronal sections from adult rat brain and revealed widespread rENT1 mRNA in pyramidal neurons of the hippocampus, granule neurons of the dentate gyrus, Purkinje and granule neurons of the cerebellum, and cortical and striatal neurons. Regional localization in rat brain was confirmed by RT-PCR. Thus, ENT1 mRNA has a wide cellular and regional distribution in brain, indicating that this nucleoside transporter subtype may be important in regulating intra- and extracellular levels of adenosine in brain.  相似文献   

8.
It has been shown by in vitro translation of polyadenylated messenger RNAs (poly(A)+ mRNAs) that the mRNAs encoding both alpha and beta tubulin isotypes are present at much higher relative levels in the developing rat brain than they are in the adult, suggesting that the requirements for tubulin subunits vary with cell type and/or with the developmental stages of a particular cell type. The postnatally developing rat cerebellum, with its readily identifiable cell populations that perform the gamut of developmental tasks, is a suitable model for analyzing specific cellular mRNA distributions during development. In this report, by in situ hybridization techniques it is shown that, by comparison to total cellular poly(A)+ mRNA levels, there is relatively more of the total beta tubulin mRNAs in mitotically active external granule layer cells than in those in the internal granule layer. These results show that migration and differentiation of these granule cells is accompanied by a decrease in their beta tubulin mRNA levels relative to the levels in granule cells of the external granule cell layer. Furthermore, the relative levels of beta tubulin mRNA both in the prenatally formed Purkinje cells and the postnatally formed stellate cells are two to fourfold less than in the granule cells of the internal granule cell layer.  相似文献   

9.
In neurons, specific RNAs are assembled into granules, which are translated in dendrites, however the functional consequences of granule assembly are not known. Tumor overexpressed gene (TOG) is a granule-associated protein containing multiple binding sites for heterogeneous nuclear ribonucleoprotein (hnRNP) A2, another granule component that recognizes cis-acting sequences called hnRNP A2 response elements (A2REs) present in several granule RNAs. Translation in granules is sporadic, which is believed to reflect monosomal translation, with occasional bursts, which are believed to reflect polysomal translation. In this study, TOG expression was conditionally knocked out (TOG cKO) in mouse hippocampal neurons using cre/lox technology. In TOG cKO cultured neurons granule assembly and bursty translation of activity-regulated cytoskeletal associated (ARC) mRNA, an A2RE RNA, are disrupted. In TOG cKO brain slices synaptic sensitivity and long term potentiation (LTP) are reduced. TOG cKO mice exhibit hyperactivity, perseveration and impaired short term habituation. These results suggest that in hippocampal neurons TOG is required for granule assembly, granule translation and synaptic plasticity, and affects behavior.  相似文献   

10.
Do neurons in the vertebrate CNS migrate on laminin?   总被引:11,自引:1,他引:10       下载免费PDF全文
P Liesi 《The EMBO journal》1985,4(5):1163-1170
In adult rat brain the extracellular matrix glycoprotein, laminin, is found only in basement membranes, but is transiently expressed by astrocytes after brain injury. Here, I show that laminin also appears in immature brain cells during CNS development, and that its presence coincides with phases of neuronal migration. In early embryos, laminin is seen throughout the whole thickness of the forming brain, and is apparently synthesized by the cells, as judged by its intracytoplasmic localization. As development proceeds, intracellular laminin becomes restricted to the periventricular regions while punctate deposits of laminin follow the course of vimentin-positive radial glial fibers. In most brain regions, the adult pattern of laminin expression is achieved by birth. In the post-natal rat cerebellum, however, laminin is detected in external granule cells, in Purkinje cells, and in punctate deposits along the radial Bergmann glial fibers. By day 24 after birth, when the migration of external granule cells is complete, all laminin immunoreactivity disappears from these structures. The transient expression of laminin in regions where neurons are migrating raises the possibility that laminin plays a role in neuronal migration during CNS development.  相似文献   

11.
The metabolism of high-molecular-weight RNA in the nuclear and cytoplasmic fractions of newborn and adult rat brain was investigated after the intracranial administration of [32P]Pi. In young brain, a considerable proportion of the newly synthesized radioactive RNA is transferred to the cytoplasm, in contrast with the adult brain, where there appears to be a high intranuclear turnover. Electrophoretic analysis of the newly synthesized RNA showed that processing of the rRNA precursor to yield the 28S and 18S rRNA may be more rapid in the adult than in the young, although most of the adult rRNA in the nucleus is not transferred to the cytoplasm. In young brain, processing is probably tightly coupled to transport of rRNA into the cytoplasm, so that 28S and 18S rRNA are not subjected to possible degradation within the nucleus. Polyadenylated RNA turns over in concert with high-molecular-weight RNA in the nuclei of the adult rat brain. In the cytoplasm the polyadenylated RNA has a higher turnover rate relative to rRNA. In the young brain the polyadenylated RNA is transferred to the cytoplasm along with rRNA, although polyadenylated RNA is transported into the cytoplasm at a faster rate. The nuclear and cytoplasmic polyadenylated RNA species of young brain are larger than their corresponding adult counterparts. These results suggest that there are considerable changes in the regulation of the nucleo-cytoplasmic relationship of rRNA and polyadenylated RNA during the transition of the brain from a developing replicative phase to an adult differentiated and non-dividing state.  相似文献   

12.
13.
14.
The localization of alpha-D-mannosidase in the rat cerebellum was studied by using indirect immunohistochemistry at both optical and electron microscopic levels. In the adult the enzyme is particularly concentrated in the dendrites and cell bodies of Purkinje cells, basket cells, and Golgi neurons in the cerebellar cortex and in the cytoplasm and dendrites of deep nuclei neurons. The cytoplasm of granule cells is poorly stained, whereas parallel fibers, white matter, Bergman fibers, and Golgi epitheloid cell perikarya show virtually no staining. Electron microscopy suggests that most of the staining is found in the cytosol, although some staining is found in the postsynaptic densities of the synapses between parallel fibers and Purkinje dendrites. The pattern of staining was followed throughout the postnatal development of the rat cerebellum. At bith an intense and diffuse staining is found in all cells except those of the external germinative layer. At the 6th postnatal day, Purkinje cell bodies and apical cones are strongly labeled. From the 13th day on the pattern is very similar to that found in the adult. However, at the 18th postnatal day (when compared with the other structures), the staining of Purkinje cell dendrites seems to be higher than at all other ages. These data are correlated with biochemical studies and discussed in relation to the possible role of this enzyme during the postnatal development of the rat cerebellum.  相似文献   

15.
16.
Cytochrome P-450 function as mono-oxygenases and metabolize xenobiotics. CYP1A1, a cytochrome P-450 enzyme, bioactivates polycyclic aromatic hydrocarbons to reactive metabolite(s) that bind to DNA and initiate carcinogenesis. Northern and immunoblot analyses revealed constitutive expression of Cyp1a1 and CYP1A1 in rat and human brain, respectively. CYP1A1 mRNA and protein were localized predominantly in neurons of cerebral cortex, Purkinje and granule cell layers of cerebellum and pyramidal neurons of CA1, CA2, and CA3 subfields of the hippocampus. RT-PCR analyses using RNA obtained from autopsy human brain samples demonstrated the presence of a splice variant having a deletion of 87 bp of exon 6. This splice variant was present in human brain, but not in the liver from the same individual, and was absent in rat brain and liver. Structural modeling indicated broadening of the substrate access channel in the brain variant. The study demonstrates the presence of a unique cytochrome P-450 enzyme in human brain that is generated by alternate splicing. The presence of distinct cytochrome P-450 enzymes in human brain that are different from well-characterized hepatic forms indicates that metabolism of xenobiotics including drugs could occur in brain by pathways different from those known to occur in liver.  相似文献   

17.
There has been a dramatic expansion of the literature on RNA interference and with it, increasing interest in the potential clinical utility of targeted inhibition of gene expression and associated protein knockdown. However, a critical factor limiting the experimental and therapeutic application of RNA interference is the ability to deliver small interfering RNAs (siRNAs), particularly in the central nervous system, without complications such as toxicity and inflammation. Here we show that a single intracerebroventricular injection of Accell siRNA, a new type of naked siRNA that has been modified chemically to allow for delivery in the absence of transfection reagents, even into differentiated cells such mature neurons, leads to neuron-specific protein knockdown in the adult rat brain. Following in vivo delivery, targeted Accell siRNAs were incorporated successfully into various types of mature neurons, but not glia, for 1 week in diverse brain regions (cortex, striatum, hippocampus, midbrain, and cerebellum) with an efficacy of delivery of approximately 97%. Immunohistochemical and Western blotting analyses revealed widespread, targeted inhibition of the expression of two well-known reference proteins, cyclophilin-B (38-68% knockdown) and glyceraldehyde 3-phosphate dehydrogenase (23-34% knockdown). These findings suggest that this novel procedure is likely to be useful in experimental investigations of neuropathophysiological mechanisms.  相似文献   

18.
B J Wilcox  J R Unnerstall 《Neuron》1991,6(3):397-409
We have localized acidic fibroblast growth factor (aFGF) mRNA in the developing and adult rat brain using in situ hybridization histochemistry. Prenatally, hybridization to aFGF mRNA was observed throughout the brain, with the strongest signal associated with cells of the developing cortical plate. Postnatally, labeling was localized to specific neuronal populations. In the hippocampus, labeling of the pyramidal cell layer and dentate granule cells was observed and became progressively more intense with maturation. Labeling was also observed in both the external and internal granule cell layers of the developing cerebellum. Pyramidal cells of the neocortex as well as neurons of the substantia nigra and locus ceruleus also express aFGF. This pattern persists into adulthood, although the intensity of the labeling is significantly reduced in the adult brain. These patterns of hybridization correlate with specific developmental events and suggest that aFGF plays a significant role in both central nervous system development and neuronal viability in the adult brain.  相似文献   

19.
20.
NELL2, a neural tissue-enriched protein, is produced in the embryo, and postembryonically in the mammalian brain, with a broad distribution. Although its synthesis is required for neuronal differentiation in chicks, not much is known about its function in the adult mammalian brain. We investigated the distribution of NELL2 in various regions of the adult rat brain to study its potential functions in brain physiology. Consistent with previous reports, NELL2-immunoreactivity (ir) was found in the cytoplasm of neurons, but not in glial fibrillary acidic protein (GFAP)-positive glial cells. The highest levels of NELL2 were detected in the hippocampus and the cerebellum. Interestingly, in the cerebellar cortex NELL2 was observed only in the GABAergic Purkinje cells not in the excitatory granular cells. In contrast, it was found mainly in the hippocampal dentate gyrus and pyramidal cell layer that contains mainly glutamatergic neurons. In the dentate gyrus, NELL2 was not detected in the GFAP-positive neural precursor cells, but was generally present in mature neurons of the subgranular zone, suggesting a role in this region restricted to mature neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号