首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Forskolin stimulated short-circuit current (SCC) and transepitelial electrical conductance (G) in the isolated skin of the toad Bufo arenarum in a concentration-dependent manner, between 1.0 x 10(-6) and 2.4 x 10(-5) M. At the latter concentration, glandular secretion appeared to be stimulated also. The increase in G was considerably greater in skins bathed in Ringer solution than in solutions containing no chloride. The increased SCC was abolished by amiloride, a specific blocker of sodium transport in amphibian membranes, irrespective of the anion present in the solution bathing the skin. G was also decreased by amiloride to control values in skins bathed in solutions without chloride, but remained elevated in the presence of Cl-. The increase in SCC following exposure to forskolin, 4.4 x 10(-6) M, was not altered when furosemide, a specific blocker of chloride transport, was present in the Ringer solution bathing the dermal side of the skin. The response to forskolin, 2.4 x 10(-5) M, however, was significantly decreased by dermal furosemide; the inhibitor was ineffective in the absence of chloride. The data indicate that forskolin acts on at least two sites: stratum granulosum cells (the main pathway for sodium transport, and an alternate site, responsible for the increase in permeability to chloride. In addition, at high concentration of the agent, glandular secretion is also stimulated. The data suggest that the adenylate cyclase-cyclic AMP system is involved in the regulation of the permeability of the toad skin to sodium and chloride, probably by separate cell types.  相似文献   

2.
When amphibian skin was incubated under conditions in which transepithelial sodium transport was abolished, a conductive transepithelial Cl- flux arose when Cl- was removed from one of the compartments. This flux was matched by short-circuit current and it accounted entirely for transepithelial conductance. Cl- influx was larger than efflux; it was linearly related to the magnitude of transepithelial Cl- concentration difference. When applied to the epithelial surface of the tissue, divalent metal cations such as Co2+, and the ethacrynic acid derivative, indacrinone, reduced rapidly and reversibly both transepithelial Cl- (in)flux and short-circuit current. Frog skin proved to be more sensitive to these inhibitors than toad skin. Further characterization of transepithelial Cl- pathway(s) should benefit from the fact that Cl- across amphibian skin can easily be monitored by the short-circuit current method, and from the availability of agents which inhibit this passive flux rapidly and reversibly.  相似文献   

3.
It is well established that active sodium-ion transport and water flow across isolated toad bladder are increased by antidiuretic hormone (ADH) and by cAMP. These agents were also observed in previous studies to cause changes in the amount of radioactive phosphate in a specific protein in the toad bladder. This protein, found by SDS-polyacrylamide gel electrophoresis of toad bladder epithelial preparations, had an apparent molecular weight of 49,000 daltons. In the present study, a correlation was found between the ability of a variety of substances to affect the amount of radioactive phosphate in this 40,000-dalton protein and their ability to alter the rate of sodium transport. Thus several agents (ADH, cAMP, theophylline, adenine, prostaglandin E1, and Mn Cl-2) caused a decrease in the amount of radioactive phosphate in the 49,000-dalton protein and also stimulated active sodium transport across the bladder. Conversely, ZnCl-2 produced an increase in the amount of radioactive phosphate in this protein and an inhibition of sodium transport. With each of these agents, the time-course of change in phosphorylation of this protein was, in general, similar to that for sodium transport. A second phosphoprotein, with an apparent molecular weight of about 42,000 daltons, showed changes in parallel with, but less extensive than, those observed in the 49,000 dalton protein. There was no consistent relationship between changes in level of phosphorylation of either in the 49,000- or 42,000- dalton protein and changes in osmotic water permeability. The results are compatible with the possibility that regulation by ADH and by cAMP of sodium transport in the toad bladder epithelium may be mediated through regulation of the amount of phosphate in a specific protein.  相似文献   

4.
In early studies of salt transport across frog and toad skin, it was assumed that chloride movement is extracellular. However, later studies suggested that chloride movement is largely transcellular. Chloride transport across toad skin is greatly diminished in skins of salt-acclimated toads (Bufo viridis) and was correlated with the number of mitochondria-rich (m.r.) cells in the epithelium. The activated chloride conductance could be recovered upon in vitro incubation with theophylline. It was found that the short-circuit current (Isc) and the chloride conductance (Gcl) in toad skin could be separated experimentally by selective use of synthetic oxytocin (Syntocinon) or theophylline, and by substituting impermeable anions for chloride. With the use of the vibrating probe we demonstrated directly that chloride-dependent peak currents are localized only over m.r. cells, under hyperpolarized (V = -100 mV) conditions. It is concluded that the m.r. cells form the principal site for passive chloride movement across amphibian skin. This cellular pathway is regulated through a cyclic AMP-mediated process. It is suggested that the spatial separation of the sodium and chloride channels is essential to maintain the granulosum cells which are engaged in sodium transport hyperpolarized, and thus providing the driving force for the sodium entry into the cells.  相似文献   

5.
Both ethanol and silver ions have been shown to affect ion transport across various epithelia. This investigation was principally undertaken to further define mechanisms of silver ions and ethanol, and their possible interactions, on sodium transport across toad skin. Isolated toad skin, mounted between identical oxygenated amphibian bicarbonate Ringer solutions, maintained stable transepithelial potential differences (serosa positive) and short-circuit currents for several hours at 25 degrees C. It was observed that (1) ethanol inhibited the active transcellular component of sodium absorption and this effect was reversible; (2) inhibition of sodium transport by ethanol was directly proportional to the applied concentration; (3) pretreatment with silver ions prevented any ethanol effects; and (4) pretreatment with ethanol prevented any silver ion effects. It was concluded from these results that ethanol induced its inhibitory effects on membrane phospholipids thereby perturbing the function of a sulfhydryl ligand, while silver ion or silver chloride complex binding to this ligand would maintain its function in sodium transport despite the presence of ethanol.  相似文献   

6.
The association between Cl-, HCO3- and H+ transported by toad bladders was investigated. Net mucosal to serosal Cl- transport by Colombian toad bladders was stimulated by incubation in HCO3- free solutions. In addition, when Colombian or Dominican toad bladders were exposed to low HCO3- concentrations on the mucosal side and 25 mM HCO3- on the serosal side, net mucosal leads to serosal Cl- transport was induced. Neither acetazolamide nor cyanide significantly inhibited Cl- transport under these conditions. The presence of a pH gradient, more acid on the mucosal side, also induced net mucosal leads to serosal Cl- transport. The results suggest that Cl- transport by toad bladders may occur by exchange with HCO3- or OH-; this process may not require carbonic anhydrase or oxidative metabolism. The Cl- transport by toad bladders is qualitatively different from the electrogenic Cl- transport of the thick limb of Henle's loop, but may be similar to a process which occurs in other portions of the nephron.  相似文献   

7.
We examined the interaction of heptanol and hydrostatic pressure on Na+ and Cl- transport in isolated toad skin. In the presence of Cl-, heptanol decreased short-circuit current (Isc) and total transepithelial resistance (Rt). However, in the absence of Cl- in the mucosal bath, heptanol increased Rt, although it retained the same inhibitory effect on Isc. When transepithelial active Na+ transport was blocked by amiloride, heptanol had no effect on Isc whether or not Cl- was present, whereas it decreased the shunt resistance (Rs) only in the presence of Cl- in the mucosal bath. Moreover, this effect of heptanol on Rs was significantly smaller in the presence of diphenylamine-2-carboxylate (DPC), a known Cl- channel blocker. Pressure also decreased Isc through inhibition of active Na+ transport, but it increased Rs. When heptanol and pressure were applied together, their inhibitory effects on Isc were additive, but their effects on Rs were antagonistic. Furthermore, when a transepithelial Cl- current was produced by reducing the Cl- concentration of the serosal bath, heptanol stimulated this current, which was reversibly inhibited by pressure or DPC addition to the mucosal bath. When the heptanol-stimulated Cl- current was first inhibited by pressure, subsequent DPC addition had less or no effect. These results suggest that one site of an antagonistic interaction of heptanol and pressure in toad skin is an apical membrane Cl- conductance.  相似文献   

8.
We have previously demonstrated that amiloride (amil) addition to the isolated ventral pelvic (VPel) skin of Bufo arenarum toad induces negative short-circuit current values, which are equivalent to the isotopically measured net chloride transport. In the present work, we found that exposure of various regions of toad skin to amil yielded different values of short-circuit current (aSCC): negative aSCC was found in the VPel and ventral pectoral skin, while those of the dorsal one were not different from zero. The distinct values of aSCC found show a regional difference in the active chloride absorption, probably related to postural adaptations. A possible role of this adaptation would be related to chloride participation in the saline balance of the animals, or the maintenance of epithelial integrity.  相似文献   

9.
In order to investigate the characteristics of the movement of Cl- ions in toad skeletal muscles we decided to study the relative membrane permeabilities of chloride and nitrate and the effects of DIDS (4,4'-diisothyocyanatostilbene-2,2'-disulphonate) upon the hyperpolarizations produced in muscle fibers when chloride or nitrate ions rapidly replace impermeant sulphate ions in the external solution. For experiments where membrane potential changes were recorded in response to sudden changes in extracellular solutions, small bundles from the semitendinosus muscles were used. We showed that DIDS reduced in a reversible manner the Cl- permeability (pCl) in toad skeletal muscle fibers. The results supporting this conclusion were the following. First, a diminished hyperpolarization in response to a sudden exposure of the fibers to a solution containing Cl-. In these experiments DIDS reduced the pCl/pK ratio to 5.5 from a control value of 12. Second, a smaller transient of the resting potential when [Cl]o was changed from 120 to 30 mM and vice versa.  相似文献   

10.
Recent investigations have demonstrated that taurine and phosphoethanolamine (PEA) are the amino acids most sensitive to microdialysis-perfusion with reduced concentrations of NaCl. The aim of the present work was to assess the importance of Na+ deficiency in evoking this response. Further, the previously described selectivity of replacement of Cl- with acetate with respect to amino acid release was reinvestigated. The hippocampus of urethane-anesthetized rats was dialyzed with Krebs-Ringer bicarbonate buffer, and amino acid concentrations of the perfusate were determined. Choline chloride was then stepwise substituted for NaCl, and, in some cases, mannitol (122 mM) was included in low sodium-containing media. In other experiments, NaCl was replaced with sodium acetate. The dialysate levels of taurine increased selectively in response to Na+ substitution. The elevation of taurine was linearly related to the increase in choline chloride, and maximal levels amounted to 335% of basal levels. The increase in extracellular taurine was not inhibited by perfusion with medium made hyperosmotic with mannitol. Replacement of Cl- with acetate stimulated the release of taurine to 652% of resting levels. In addition, PEA levels increased to 250% of control concentration. Other amino acids were unaffected by Cl- substitution. The results show that taurine transport is considerably more sensitive to Na+ depletion than glutamate transport, which also is known to be Na+ dependent. The taurine increase evoked by low Na+ is not caused by cellular swelling as it was unaffected by hyperosmolar medium. Finally, substitution of acetate for Cl- causes a specific elevation of extracellular taurine and PEA, possibly as a result of cytotoxic edema.  相似文献   

11.
An astringent tea constituent, (?)-epigallocatechin gallate strongly depresses the glossopharyngeal nerve responses of the toad to other green tea constituents and presents a response pattern similar to that of green tea liquor. This substance also exhibits an inhibitory effect on responses to quinine hydrochloride and sucrose, but enhances the response to sodium chloride.  相似文献   

12.
Measurements of chloride flux ratios across frog skin at different clamping voltages showed that chloride transport at clamping voltages from 0 mV to and beyond the spontaneous potential is probably electrodiffusion. At reversed potentials a significant fraction of chloride transport could be described formally as exchange diffusion. Chloride conductance was found to be highly voltage dependent, being largest at hyperpolarizing clamping voltages. The transition from the less conducting state to the more conducting one was studied by recording the time course of the current after a step change in clamping voltage from 0 mV to hyperpolarizing voltages. The shape of the curve is sigmoidal, and the relative rate of change of current increases with increasing hyperpolarization. It is proposed that the change in conductance is governed by the same mechanism as in the toad skin, namely a change in chloride permeability due to voltage gating of chloride channels. The time course of transepithelial conductance after addition of amiloride to the outside solution indicates that a fraction of the decrease in conductance is due to closure of chloride channels caused by the change in intracellular potential due to the inhibition of the sodium channels.  相似文献   

13.
Transport of gamma-aminobutyric acid (GABA) is electrogenic and completely depends on the presence of both sodium and chloride ions. These ions appear to be cotransported with gamma-aminobutyric acid through its transporter [reviewed in Kanner, B. I. (1983) Biochim. Biophys. Acta 726, 293-316]. Using proteoliposomes into which a partially purified gamma-aminobutyric acid transporter preparation was reconstituted, we have been able--for the first time--to provide direct evidence for sodium- and chloride-coupled gamma-aminobutyric acid transport. This has been done by measuring the fluxes of 22Na+, 36Cl-, and [3H]GABA. These fluxes have the following characteristics: There are components of the net fluxes of sodium and chloride that are gamma-aminobutyric acid dependent. The sodium flux is chloride dependent; i.e., when Cl- is replaced by inorganic phosphate or by SO4(2-), gamma-aminobutyric acid dependent sodium fluxes are abolished. The chloride flux is sodium dependent; i.e., when Na+ is replaced by Tris+ or by Li+, gamma-aminobutyric acid dependent chloride fluxes are abolished. Thus, the gamma-aminobutyric acid dependent sodium and chloride fluxes appear to be catalyzed by the transporter. Using these fluxes we have attempted to determine the stoichiometry of the process. We measured the initial rate of sodium-dependent gamma-aminobutyric acid fluxes and that of gamma-aminobutyric acid dependent sodium fluxes. This yields the stoichiometry between sodium and gamma-aminobutyric acid (2.58 +/- 0.99). Similarly, we measured the stoichiometry between chloride and gamma-aminobutyric acid, which is found to be 1.27 +/- 0.12.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effects of sympathetic and parasympathetic agonists and antagonists on discharge of secretory product by the granular and mucous glands were examined in the red-spotted newt, Notopthalmus viridescens viridescens. Observations were made also on the South African clawed toad. Xenopus laevis, the grass frog, Rana pipiens, and the crested newt, Triturus cristatus. In contrast to the granular glands of the South African clawed toad and the grass frog, which were stimulated by alpha-adrenergic agents, those of the red-spotted newt discharge in response to acetylcholine, either in vitro when added to the Holtfreter's solution in which explants were incubated, or in vivo when injected subcutaneously. Granular glands of the crested newt were also dischared in response to subcutaneous injection of acetylcholine. Stimulation of the granular glands by acetylcholine was blocked by atopine but not by tubocurarie, indicating that the cholinergic receptors are muscarinic rather than nicotinic. The mucous glands of the red-spotted newt, on the other hand, did not discharge in response to either acetylcholine or to adrenergic agents.  相似文献   

15.
1. In short-circuited toad skin preparations exposed bilaterally to NaCl-Ringer's containing 1 mM SO2(-4), influx of sulfate was larger than efflux showing that the skin is capable of transporting sulfate actively in an inward direction. 2. This active transport was not abolished by substituting apical Na+ for K+. 3. Following voltage activation of the passive Cl- permeability of the mitochondria-rich (m.r.) cells sulfate flux-ratio increased to a value predicted from the Ussing flux-ratio equation for a monovalent anion. 4. In such skins, which were shown to exhibit vanishingly small leakage conductances, the variation of the rate coefficient for sulfate influx (y) was positively correlated with the rate coefficient for Cl- influx (x), y = 0.035 x - 0.0077 cm/sec (r = 0.9935, n = 15). 5. Addition of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl-xanthine to the serosal bath of short-circuited preparations resulted in a significant stimulation of the passive Cl- and SO2(-4) permeabilities. 6. It is suggested that SO2(-4) and Cl- ions are transported along the same pathway of the m.r. cells. Depending on the transport mode of the apical Cl- transport system, electro-diffusion, active transport (sulfate:bicarbonate exchange) and self-exchange diffusion take place. Irrespective of the mechanism of transport, sulfate is probably transported as a monovalent anion species.  相似文献   

16.
As a rule, chloride movement (JC1-) across amphibian skin is considered to be passive; this is implied in fact for preparations incubated in Ringer's fluid, since short-circuit current (Isc) is the quantitative expression of net, active sodium transport (JNa+). The nature of the Cl- pathway(s) was investigated by incubating amphibian skin (mostly Bufo marinus) with Cl- present on the epithelial side only, and after blocking JNa+ by combined treatment with ouabain and amiloride. In such conditions, JCl- was found to be equal to (reversed) Isc; furthermore, when JCl- was "translated" in terms of conductance, gCl-, the latter accounted almost quantitatively for transepithelial conductance, g1. When residual intratissue (i.e. intracellular) electronegativity was eliminated by replacing Na+ with K+, JCl- was larger but Isc and JCl- were still found to reflect each other, and gCl- again accounted for most, if not all, of g1. JCl- in the opposite direction, as a result of Cl- being present only on the dermal side, was negligible, and g1 was very low. Thus, in the absence of sodium transport, when experimental conditions are such that a net inward JCl- obtains, the anion apparently flows only through (a) conductive pathway(s). Aldosterone is probably involved in the regulation of this pathway, as JCl- was much lower when toads were maintained in dilute saline than in water or on moist peat; so was the fraction of the apical surface corresponding to mitochondria-rich cells.  相似文献   

17.
H+ extrusion by the isolated skins of two amphibia, Rana ridibunda and Bufo bufo, was studied in order to test for the presence of exchange mechanisms of the type Na+/H+ and Cl-/HCO3-, which have been described in several epithelial structures. The preparations were mounted in chambers of the Ussing type, so that the short-circuit current could be used as a function of Na+ transport and the pH-stat techinique was utilize to determine the rates of H+ extrusion under different experimental conditions. The conditions were either the withdrawal of the ions intervening the mentioned exchanges (Cl- or Na+), or the addition of drugs with well-known effects on Na+ up-take and transport (antidiuretic hormone and amiloride). In the frog skin, H+ excretion was detected in solutions containing either Cl- or SO4-2-, with identical rates. Again, Na+ substitution by Mg-2+ had no effect on H+ excretion rates, neither did the suppression of Na+ influx by amiloride or its stimulation by antidiuretic hormone. These experiments were repeated with similar results in gland-free preparations of the epidermis of frog skin separated from the corion by the action of collagenase. Experiments in toad skin that H+ excretion could not be detected whan Cl- was present in the outer medium, but became apparent if an impermant anion, SO4-2-, was used. This observation is compatible with the existence of an exchange mechanism of the type Cl-/HCO3-. Secondly, in these preparations H+ extrusion increased after stimulation with antidiuretic hormone and decreased when amiloride was used or when Na+ was substituted by Mg+, suggesting that a least a fraction of the total H+ efflux is linked to Na+ influx. In the isolated frog skin this mechanism does not seem to be operative.  相似文献   

18.
Chloride channels in toad skin   总被引:3,自引:0,他引:3  
A study of the voltage and time dependence of a transepithelial Cl- current in toad skin (Bufo bufo) by the voltage-clamp method leads to the conclusion that potential has a dual role for Cl- transport. One is to control the permeability of an apical membrane Cl-pathway, the other is to drive Cl- ions through this pathway. Experimental analysis of the gating kinetics is rendered difficult owing to a contamination of the gated currents by cellular ion redistribution currents. To obtain insight into the effects of accumulation-depletion currents on voltage clamp currents of epithelial membranes, a mathematical model of the epithelium has been developed for computer analysis. By assuming that the apical membrane Cl- permeability is governed by a single gating variable (Hodgkin-Huxley kinetics), the model predicts fairly well steady-state current-voltage curves, the time course of current activations from a closed state, and the dependence of unidirectional fluxes on potential. Other predictions of the model do not agree with experimental findings, and it is suggested that the gating kinetics are governed by rate coefficients that also depend on the holding potential. Evidence is presented that Cl- transport through open channels does not obey the constant-field equation.  相似文献   

19.
Sheets of utricular epithelium from gerbil were mounted in a micro-Ussing chamber in order to identify and localize chloride conductances. The [Cl-] was rapidly reduced (substituted with isethionate) in the apical or basolateral perfusate and the transepithelial potential difference (Vt) and transepithelial resistance (Rt) were monitored continuously. In addition, agents known to inhibit anion transport in other epithelia were applied. The direction of all initial changes in Vt and Rt due to Cl- substitutions were consistent with the presence of ionic conductances for Cl- on both sides of the epithelium. The time-courses and magnitudes of the fall in Vt and increase in Rt during apical [Cl-] steps in the presence and absence of basolateral bumetanide were monophasic and identical in the two cases. The response of Vt to basolateral [Cl-] steps was biphasic and the initial response was greatly attenuated by bumetanide. These findings demonstrate that the largest conductance for Cl- is in the basolateral cell membrane, but that the paracellular and/or apical pathway also possess a finite Cl- conductance. All three agents tested, 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), 5-nitro-2(3-phenylpropylamino)benzoic acid (NPPB) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), caused an increase in Vt. NPPB and DIDS were more effective from the apical side. DCDPC and DIDS administered from the apical side led to a decrease in Rt. These results suggest that these agents act in this tissue by enhancing a conductive pathway on the apical membrane rather than blocking the basolateral Cl- conductance.  相似文献   

20.
The effect of Ledakrin (an acridine derivative with antineoplastic action), free or liposome-bound, on the bioelectric activity of frog skin was studied by the method of Ussing and it was shown that this activity (being a function of sodium transport) depended on the chemical composition of the liposomes as well as on the calcium content of the experimental medium. Two conclusions have been drawn: 1) the first phase of the response triggered by Ledakrin is due to its action on the cell membrane, 2) the second phase depends on an intracellular mechanism due, probably, to Ledakrin effect on the cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号