首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

2.
Yeast hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1), a homodimer, was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics over a wide range of the inhibitor concentration. The second-order-rate constant for the inactivation of hexokinase was estimated to be 45 M-1.s-1. Hexokinase was protected more by sugar substrates than by nucleoside triphosphates during inactivation by o-phthalaldehyde. Absorption spectrum (lambda max 338 nm), and fluorescence excitation (lambda max 363 nm) and emission (lambda max 403 nm) spectra of the hexokinase-o-phthalaldehyde adduct were consistent with the formation of an isoindole derivative. These results also suggest that sulfhydryl and epsilon-amino functions of the cysteine and lysine residues, respectively, participating in the isoindole formation are about 3 A apart in the native enzyme. About 2 mol of the isoindole per mol of hexokinase dimer were formed following complete loss of the phosphotransferase activity. Chemical modification of hexokinase by iodoacetamide in the presence of mannose resulted in the modification of six sulfhydryl groups per mol of hexokinase with retention of the phosphotransferase activity. Subsequent reaction of the iodoacetamide modified hexokinase with o-phthalaldehyde resulted in complete loss of the phosphotransferase activity with concomitant modification of the remaining two sulfhydryl groups of hexokinase. Chemical modification of hexokinase by iodoacetamide in the absence of mannose resulted in complete inactivation of the enzyme. The iodoacetamide inactivated hexokinase failed to react with o-phthalaldehyde as evidenced by the absence of a fluorescence emission maximum characteristic of the isoindole derivative. The holoenzyme failed to react with [5'-(p-fluorosulfonyl)benzoyl]adenosine. The dissociated hexokinase could be inactivated by [5'-(p-fluorosulfonyl)benzoyl]adenosine; the degree of inactivation paralleled the extent of reaction between o-phthalaldehyde and the nucleotide-analog modified enzyme. Thus, it is concluded that two cysteines and lysines at or near the active site of the hexokinase were involved in reaction with o-phthalaldehyde following complete loss of the phosphotransferase activity. An important finding of this investigation is that the lysines, involved in isoindole formation, located at or near the active site are probably buried.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Chicken liver mitochondrial phosphoenolpyruvate carboxykinase is inactivated by o-phthalaldehyde. The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 29 M-1 s-1 at pH 7.5 and 25 degrees C. The modified enzyme showed maximal fluorescence at 427 nm upon excitation at 337 nm, consistent with the formation of isoindole derivatives by the cross-linking of proximal cysteine and lysine residues. Activities in the physiologic reaction and in the oxaloacetate decarboxylase reaction were lost in parallel upon modification with o-phthalaldehyde. Plots of (percent of residual activity) versus (mol of isoindole incorporated/mol of enzyme) were biphasic, with the initial loss of enzymatic activity corresponding to the incorporation of one isoindole derivative/enzyme molecule. Complete inactivation of the enzyme was accompanied by the incorporation of 3 mol of isoindole/mol of enzyme. beta-Sulfopyruvate, an isoelectronic analogue of oxaloacetate, completely protected the enzyme from reacting with o-phthalaldehyde. Other substrates provided protection from inactivation, in decreasing order of protection: oxaloacetate greater than phosphoenolpyruvate greater than MgGDP, MgGTP greater than oxalate. Cysteine 31 and lysine 39 have been identified as the rapidly reacting pair in isoindole formation and enzyme inactivation. Lysine 56 and cysteine 60 are also involved in isoindole formation in the completely inactivated enzyme. These reactive cysteine residues do not correspond to the reactive cysteine residue identified in previous iodoacetate labeling studies with the chicken mitochondrial enzyme (Makinen, A. L., and Nowak, T. (1989) J. Biol. Chem. 264, 12148-12157). Protection experiments suggest that the sites of o-phthalaldehyde modification become inaccessible when the oxaloacetate/phosphoenolpyruvate binding site is saturated, and sequence analyses indicate that cysteine 31 is located in the putative phosphoenolpyruvate binding site.  相似文献   

4.
The two activities of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by o-phthalaldehyde. Absorbance and fluorescence spectra of the modified enzyme were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme subunit). The inactivation of 6-phosphofructo-2-kinase by o-phthalaldehyde was faster than the inactivation of fructose-2,6-bisphosphatase, which was concomitant with the increase in fluorescence. The substrates of 6-phosphofructo-2-kinase did not protect the kinase against inactivation, whereas fructose-2,6-bisphosphate fully protected against o-phthalaldehyde-induced inactivation of the bisphosphatase. Addition of dithiothreitol prevented both the increase in fluorescence and the inactivation of fructose-2,6-bisphosphatase, but not that of 6-phosphofructo-2-kinase. It is proposed that o-phthalaldehyde forms two different inhibitory adducts: a non-fluorescent adduct in the kinase domain and a fluorescent isoindole derivative in the bisphosphatase domain. A lysine and a cysteine residue could be involved in fructose-2,6-bisphosphate binding in the bisphosphatase domain of the protein.  相似文献   

5.
A fluorescent chemoaffinity label o-phthalaldehyde (OPTA) was used to ascertain the conformational flexibility and polarity at the active site of xylanase I (Xyl I). The kinetics of inactivation of Xyl I with OPTA revealed that complete inactivation occurred due to the binding of one molecule of OPTA to the active site of Xyl I. The formation of a single fluorescent isoindole derivative corroborated these findings. OPTA has been known to form a fluorescent isoindole derivative by crosslinking the proximal thiol and amino groups of cysteine and lysine. The involvement of cysteine in the formation of a Xyl I-isoindole derivative has been negated by fluorometric and chemical modification studies on Xyl I with group-specific reagents and by amino-acid analysis. The kinetic analysis of diethylpyrocarbonate-modified Xyl I established the presence of an essential histidine at or near the catalytic site of Xyl I. Modification of histidine and lysine residues by diethylpyrocarbonate and 2,4,6-trinitrobenzenesulfonic acid, respectively, abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating that histidine and lysine participate in the formation of the isoindole complex. A mechanism for the reaction of OPTA with histidine and lysine residues present in the protein structure has been proposed. Experimental evidence presented here suggests for the first time that the active site of Xyl I is conformationally more flexible and more easily perturbed in the presence of denaturants than the molecule as a whole. The changes in the fluorescence emission maxima of a model compound (isoindole adduct) in solvents of different polarity were compared with the fluorescence behaviour of the Xyl I-isoindole derivative, leading to the conclusion that the active site is located in a microenvironment of low polarity.  相似文献   

6.
Pigeon liver fatty acid synthetase (FAS) was inactivated irreversibly by stoichiometric concentration of o-phthalaldehyde exhibiting a bimolecular kinetic process. FAS-o-phthalaldehyde adduct gave a characteristic absorption maxima at 337 nm. Moreover this derivative showed fluorescence emission maxima at 412 nm when excited at 337 nm. These results were consistent with isoindole ring formation in which the -SH group of cysteine and epsilon-NH2 group of lysine participate in the reaction. The inactivation is caused by the reaction of the phosphopantetheine -SH group since it is protected by either acetyl- or malonyl-CoA. The enzyme incubated with iodoacetamide followed by o-phthalaldehyde showed no change in fluorescence intensity but decrease in intensity was found in the treatment of 2,4,6-trinitrobenzenesulphonic acid (TNBS), a lysine specific reagent with the enzyme prior to o-phthalaldehyde addition. As o-phthalaldehyde did not inhibit enoyl-CoA reductase activity, so nonessential lysine is involved in the o-phthalaldehyde reaction. Double inhibition experiments showed that 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a thiol specific reagent, binds to the same cysteine which is also involved in the o-phthalaldehyde reaction. Stoichiometric results indicated that 2 moles of o-phthalaldehyde were incorporated per mole of enzyme molecule upon complete inactivation.  相似文献   

7.
Ahn JY  Choi S  Cho SW 《Biochimie》1999,81(12):1123-1129
Incubation of two types of glutamate dehydrogenase (GDH) isoproteins from bovine brain with o-phthalaldehyde resulted in a time-dependent loss of enzyme activity. The inactivation was partially prevented by preincubation of the GDH isoproteins with 2-oxoglutarate or NADH. Spectrophotometric studies indicated that the inactivation of GDH isoproteins with o-phthalaldehyde resulted in isoindole derivatives characterized by typical fluorescence emission spectra with a stoichiometry of one isoindole derivative per molecule of enzyme subunit. There were no differences between the two GDH isoproteins in sensitivities to inactivation by o-phthalaldehyde indicating that the microenvironmental structures of the GDH isoproteins are very similar to each other. Tryptic peptides of the isoproteins, modified with and without protection, identified a selective modification of one lysine as in the region containing the sequence L-Q-H-G-S-I-L-G-F-P-X-A-K for both GDH isoproteins. The symbol X indicates a position for which no phenylthiohydantoin-amino acid could be assigned. The missing residue, however, can be designated as an o-phthalaldehyde-labeled lysine since the sequences including the lysine residue in question have a complete identity with those of the other mammalian GDHs. Also, trypsin was unable to cleave the labeled peptide at this site. Both amino acid sequencing and compositional analysis identified Lys-306 as the site of o-phthalaldehyde binding within the brain GDH isoproteins.  相似文献   

8.
Conformation and microenvironment at the active site of 1,4-beta-D-glucan glucanohydrolase was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde. OPTA has been known to form a fluorescent isoindole derivative by cross-linking the proximal thiol and amino groups of cysteine and lysine. Modification of lysine of the enzyme by TNBS and of cysteine residue by PHMB abolished the ability of the enzyme to form an isoindole derivative with OPTA. Kinetic analysis of the TNBS and PHMB-modified enzyme suggested the presence of essential lysine and cysteine residues, respectively, at the active site of the enzyme. The substrate protection of the enzyme with carboxymethylcellulose (CMC) confirmed the involvement of lysine and cysteine residues in the active site of the enzyme. Multiple sequence alignment of peptides obtained by tryptic digestion of the enzyme showed cysteine is one of the conserved amino acids corroborating the chemical modification studies.  相似文献   

9.
Guanosine cyclic 3',5'-monophosphate (cGMP) dependent protein kinase is inactivated by o-phthalaldehyde. The loss of phosphotransferase activity following treatment with o-phthalaldehyde was rapid, and the second-order rate constant at 25 degrees C and pH 7.3 was 35 M-1 s-1. The inactivation reaction did not follow saturation kinetics. The cGMP-dependent protein kinase was protected from inactivation by its substrates, MgATP and Ser-peptide. Fluorescence excitation and emission spectroscopic data showed that an isoindole derivative was formed following the reaction between cGMP-dependent protein kinase and o-phthalaldehyde. Four moles of isoindole per mole of the cGMP-dependent protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. In the absence of cGMP, the protein kinase lost only 50% of its cGMP binding activity while there was almost a complete loss of its phosphotransferase activity. Studies in the presence of 20 microM cGMP, however, showed that about 2 mol of isoindole groups per mole of the protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. The second-order rate constant for inactivation of cGMP-dependent protein kinase by o-phthalaldehyde in the presence of 20 microM cGMP was 40 M-1 s-1. Fluorescence measurements of samples containing inactivated, iodoacetamide-modified, or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified, cGMP-dependent protein kinase and o-phthalaldehyde showed that the intensity of fluorescence in each case was about 50% of that obtained from unmodified, active cGMP-dependent protein kinase and o-phthalaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Anish R  Rao M 《Biochimie》2007,89(12):1489-1497
A bifunctional high molecular weight (Mr, 64,500 Da) beta-1-3, 1-4 glucan 4-glucanohydrolase was purified to homogeneity from Thermomonospora sp., exhibiting activity towards lichenan and xylan. A kinetic method was used to analyze the active site that hydrolyzes lichenan and xylan. The experimental data was in agreement with the theoretical values calculated for a single active site. Probing the conformation and microenvironment at active site of the enzyme by fluorescent chemo-affinity label, OPTA resulted in the formation of an isoindole derivative with complete inactivation of the enzyme to hydrolyse both lichenan and xylan confirmed the results of kinetic method. OPTA forms an isoindole derivative by cross-linking the proximal thiol and amino groups. The modification of cysteine and lysine residues by DTNB and TNBS respectively abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating the participation of cysteine and lysine in the formation of isoindole complex.  相似文献   

11.
Addition of hydroxypropyl-beta-cyclodextrin to o-phthalaldehyde (OPA)-amino acid-thiol reaction mixtures is shown to cause significant enhancement of the fluorescence of the isoindole product for a wide range of amino acids, with the largest effects observed in the cases of glycine and lysine. The largest enhancement observed was a factor of 2.67 in the case of the derivative of glycine. This fluorescence enhancement is the result of the formation of a 1:1 host:guest inclusion complex between the isoindole and the cyclodextrin. Relatively small association constants of 44 and 130 M(-1) were obtained for the inclusion of the derivatives of glycine and lysine, respectively. Inclusion of the isoindole derivative into hydroxypropyl-beta-cyclodextrin was also found to result in a significant stabilization of the isoindole derivatives, contrary to what has been previously reported for inclusion into beta-cyclodextrin. For example, the lifetime of the lysine derivative was found to increase from 42 to 222 min, a factor of 5.3. These results have potential applications in fluorescence-based HPLC and high-performance capillary electrophoresis amino acid analysis methods using OPA derivation. Addition of hydroxypropyl-beta-cyclodextrin to the reaction mixture results in an increase in both the fluorescence and the stability of the isoindole product, providing potentially significant improvements to the method.  相似文献   

12.
Modification of phosphoenolpyruvate carboxylase with o-phthalaldehyde (OPA) resulted in rapid and irreversible inactivation exhibiting biphasic reaction kinetics. The kinetic analysis and correlation of spectral changes with activity indicated that inactivation by OPA results from the modification of two lysine and two cysteine residues per subunit of the enzyme. PEP plus Mg2+ offered substantial protection against modification. Some of the effectors also gave appreciable protection against modification indicating that the residues may be located at or close to the active site. Thus, the results indicate formation of two isoindoles showing the proximity of the essential lysine and cysteine residues at the active site.  相似文献   

13.
o-Phthalaldehyde, a bifunctional cross-linking reagent, is commonly used as a probe for the active site of enzymes. In this study, the interaction of o-phthalaldehyde with camel lens zeta-crystallin was examined by activity and fluorescence measurements. Predictably, the oxidoreductase activity of zeta-crystallin was inhibited irreversibly by o-phthalaldehyde in a time- and concentration-dependent manner, and the presence of NADPH with the enzyme appeared to provide a high degree of protection against o-phthalaldehyde inactivation. Interaction of o-phthalaldehyde with zeta-crystallin resulted in formation of isoindole adduct, which exhibited characteristic fluorescence at 415 nm. However, neither inactivation nor modification of the enzyme showed the expected pseudo-first-order kinetics; both events were highly sequential reaching different levels of saturation at different concentrations of o-phthalaldehyde. The modified enzyme had a maximum stoichiometry of 1 mol isoindole/subunit, and bound NADPH to nearly the same extent as unmodified enzyme. Gel filtration experiments suggested that o-phthalaldehyde-modified zeta-crystallin had higher apparent molecular weight than unmodified enzyme, even though the enzyme remained largely monomeric as revealed by electrophoresis on denaturing gel. These results suggested that modification by o-phthalaldehyde might have been so intrusive as to sequentially modify the tetrameric structure of zeta-crystallin.  相似文献   

14.
A simple procedure, involving heat treatment, gel filtration on Sephadex G-100 followed by chromatography on anti-S1 nuclease antibodies bound to Sepharose, was developed for purification of S1 nuclease to homogeneity with an overall yield of 72%. S1 nuclease was rapidly inactivated, at pH 6.0 and 37°C, in presence of o-phthalaldehyde. Kinetic analysis of o-phthalaldehyde mediated inactivation showed that the reaction followed pseudo-first-order kinetics and the loss of enzyme activity was due to the formation of a single isoindole derivative per molecule of the enzyme. Absorbance and fluorescence spectrophotometric data also gave similar results. The isoindole derivative formation, as a result of o-phthalaldehyde treatment is known to occur through crosslinking of the thiol group of cysteine and the ε-amino group of lysine, situated in close proximity in the native enzyme. Since, modification of only available cysteine residue (Cys 25) did not affect the catalytic activity of the enzyme, the o-phthalaldehyde mediated inactivation of S1 nuclease is due to the modification of lysine. Substrates of S1 nuclease, namely ssDNA, RNA and 3′ AMP, could protect the enzyme against o-phthalaldehyde mediated inactivation. Moreover, the modified enzyme (having very little catalytic activity) showed a significant decrease in its ability to bind 5′ AMP, a competitive inhibitor of S1 nuclease, suggesting that the modification has occurred at the substrate binding site. The above results point towards the presence of cysteine 25 in close proximity to the substrate binding site.  相似文献   

15.
The enzyme succinic semialdehyde dehydrogenase from pig brain has been 2000-fold purified by a combination of DEAE-cellulose, hydroxyapatite, and AMP-Sepharose chromatography. This preparation has a molecular weight of 160,000 and a specific activity of 5.3 mumol/min.mg at 25 degrees C. The inhibition of succinic semialdehyde dehydrogenase by carbonyl compounds, i.e. P-pyridoxal and o-phthalaldehyde was investigated in detail. The enzyme is reversible, inhibited by preincubation with P-pyridoxal (mixing molar ratio, 300:1) at either 25 degrees or 37 degrees C. Reduction with NaBH1 results in the incorporation of approximately 4 mol of P-pyridoxyl residues/mol of enzyme. NAD+ protects the enzyme against inactivation by P-pyridoxal, whereas the substrate succinic semialdehyde failed to prevent the reaction of P-pyridoxal with lysine residues of the protein. The binding of approximately 10 mol of o-phthalaldehyde/mol of enzyme results in irreversible loss of catalytic activity. The reaction is fast and easily monitored by absorption and fluorescence spectroscopy.  相似文献   

16.
Biliverdin reductase (molecular form 1, EC 1.3.1.24, bilirubin:NAD(P)+ oxidoreductase) carries three thiol residues. Only one of them could be alkylated when a ratio N-ethylmaleimide (NEM)/mol enzyme's SH = 90 was used. The alkylation of this thiol group inhibited the conversion of molecular form 1 to its dimer, molecular form 3; however, it did not inhibit the enzymatic activity. At a ratio of NEM/enzyme's SH = 300, two thiol residues were alkylated and the activity of the enzyme was totally inhibited. The third thiol group could not be alkylated either by NEM or by iodoacetamide. Biliverdin as well as the co-substrate NADPH protected the thiol residue essential for the enzymatic activity from alkylation. Spectroscopic evidence was obtained that this thiol group binds covalently to the C-10 of biliverdin to form a rubinoid adduct. The presence of a lysine residue, which is also essential for the enzymatic activity, could be inferred from the fact that by reduction of the Schiff base formed by the enzyme with pyridoxal phosphate the catalytic activity was irreversibly abolished. The location of a lysine residue in the vicinity of the thiol group involved in the catalytic activity was evident when the enzyme was treated with o-phthalaldehyde. The inactivation of the enzymatic activity was coincident with the formation of the fluorescent isoindole derivative which originates when the thiol and epsilon-NH2 groups are located about 3 A apart. The presence of a positively charged ammonium ion in the vicinity of the NADPH binding site was inferred from the shifts in the UVmax of NADPH from 340 nm to 327 nm and of 3-acetyl NADPH from 360 nm to 348 nm when the pyridine nucleotides bind to the reductase. The involvement of arginine residues in the enzymatic activity was established by inhibition of the latter after reaction with butanedione. This inhibition was totally protected by NADPH but not by biliverdin. The similarity of the structural features of biliverdin reductase with those of several dehydrogenases is discussed.  相似文献   

17.
Enterobacter aerogenes glycerol dehydrogenase (G1DH EC 1.1.1.6), a tetrameric NAD+ specific enzyme catalysing the interconversion of glycerol and dihydroxyacetone, was inactivated on reaction with pyridoxal 5-phosphate (PLP) and o-phthalaldehyde (OPA). Fluorescence spectra of PLP-modified, sodium borohydride-reduced G1DH indicated the specific modification of epsilon-amino groups of lysine residues. The extent of inhibition was concentration and time dependent. NAD+ and NADH provided complete protection against enzyme inactivation by PLP, indicating the reactive lysine is at or near the coenzyme binding site. Modification of G1DH by the bifunctional reagent OPA, which reacts specifically with proximal epsilon-NH2 group of lysines and -SH group of cysteines to form thioisoindole derivatives, inactivated the enzyme. Molecular weight determinations of the modified enzyme indicated the formation of intramolecular thioisoindole formation. Glycerol partially protected the enzyme against OPA inactivation, whereas NAD+ was ineffective. These results show that the lysine involved in the OPA reaction is different from the PLP-reactive lysine, which is at or near the coenzyme binding site. DTNB titration showed the presence of only a single cysteine residue per monomer of G1DH. This could be participating with a proximal lysine residue to form a thioisoindole derivative observed as a result of OPA modification.  相似文献   

18.
The reaction of the phosphate residue transfer catalysed by histone kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) was studied. The phosphotransferase reaction was shown to obey the mechanism of ping-pong bi-bi type. After incubation of the catalytic subunit of histone kinase with [gamma-32P]ATP the incorporation of one mole of [32P]phosphage per mole of protein was observed. The tryptic [32P]phosphohistidine-containing peptide was isolated and its N-terminus and amino acid composition were determined. The 2',3'-dialdehyde derivative of ATP (oATP) was used as the affinity label for the catalytic subunit of cyclic-AMP-dependent histone kinase. The inhibitor formed an alidmine bond with epsilon-amino group of the lysine residue of the active site and was irreversibly bound to the enzyme after reduction by sodium borohydride with concurrent irreversible inactivation of the enzyme. After inactivation, about one mole of 14C-labelled inhibitor was incorporated per mole of the enzyme. ATP effectively protected the catalytic subunit of histone kinase against inactivation by oATP. Tryptic digestion of the enzyme-inhibitor complex led to the isolation of the 14C-labelled peptide of the active site of histone kinase. Basing on these results, the role of histidine and lysine residues in the active site of the catalytic subunit of histone kinase was suggested.  相似文献   

19.
Yeast hexokinase is a homodimer consisting of two identical subunits. Yeast hexokinase was inactivated by 2-aminothiophenol at 25 degrees C (pH 9.1). The reaction followed pseudo-first-order kinetics until about 70% of the phosphotransferase activity was lost. About 0.65 mol of 2-aminothiophenol/mol of hexokinase was found to be bound after the 70% loss of the enzyme activity. Completely inactivated hexokinase showed a stoichiometry of about 1 mol of 2-aminothiophenol bound/mol of the enzyme. The evidence obtained from kinetic experiments, stoichiometry of the inactivation reaction and fluorescence emission measurements suggested site-site interaction (weak negative co-operativity) during the inactivation reaction. The approximate rate constants for the reversible binding of 2-aminothiophenol to the first subunit (KI) and for the rate of covalent bond formation with only one site occupied (k3) were 150 microM and 0.046 min-1 respectively. The inactivation reaction was pH-dependent. Dithiothreitol, 2-mercaptoethanol and cysteine restored the phosphotransferase activity of the hexokinase after inactivation by 2-aminothiophenol. Sugar substrates protected the enzyme from inactivation more than did the nucleotides. Thus it is concluded that the inactivation of the hexokinase by 2-aminothiophenol was a consequence of a covalent disulphide bond formation between the aminothiol and thiol function at or near the active site of the enzyme. Hexokinase that had been completely inactivated by 2-aminothiophenol reacted with o-phthalaldehyde. Fluorescence emission intensity of the incubation mixture containing 2-aminothiophenol-modified hexokinase and o-phthalaldehyde was one-half of that obtained from an incubation mixture containing hexokinase and o-phthalaldehyde under similar experimental conditions. The intensity and position of the fluorescence emission maximum of the 2-aminothiophenol-modified hexokinase were different from those of the native enzyme, indicating conformational change following modification. Whereas aliphatic aminothiols were completely ineffective, aromatic aminothiols were good inhibitors of the hexokinase. Cyclohexyl mercaptan weakly inhibited the enzyme. Inhibition of the hexokinase by heteroaromatic thiols was dependent on the nature of the heterocyclic ring and position of the thiol-thione equilibrium. The inhibitory function of a thiol is associated with the following structural characteristics: (a) the presence of an aromatic ring, (b) the presence of a free thiol function and (c) the presence of a free amino function in the close proximity of the thiol function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
5-Aminolevulinate dehydratase from bovine liver requires Zn(II) for its activity and is inhibited by micromolecular concentrations of Pb(II). To elucidate the structure of the active site and its interactions between the active site and the metal binding site we labeled the active site for fluorescence studies and ESR spectroscopy. o-Phthalaldehyde reacted with active site lysyl and cysteinyl residues to form a fluorescent isoindole derivative. The fluorescence energy was independent of the deprivation of Zn(II) and of its substitution by the inhibitory Pb(II). For ESR-studies five iodoacetamide and four isothiocyanate pyrrolidine-N-oxyl derivatives with various spacer lengths were used to label the active site cysteinyl and lysyl residues, respectively. The ESR spectra of the modified enzyme preparations exhibited a significant immobilization of all labels, even with the longest spacers employed. Obviously the reactive cysteine is buried more than 12 A, and the active site lysine more than 11 A in a cleft of the enzyme structure. Zn(II) deprivation from the iodoacetamide spin-labeled enzyme caused a marked reversible increase in label mobility, whereas the Pb(II) substituted enzyme exhibited a smaller mobilization of the label. These results are interpreted by a model of the active site where the reactive cysteinyl and the lysyl side groups are close enough to be crosslinked by o-phthalaldehyde within a distance of 3 A. A structural role is assigned to Zn(II) in the enzyme, since Zn(II) deprivation does not alter the fluorescence of the isoindole derivative and increases the mobility of the cysteine-bound spin labels in the active site cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号