首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Caveolae are specialised vesicular microdomains of the plasma membrane. Using freeze-fracture immunogold labelling and stereoscopic imaging, the distribution of labelled caveolin 1 in caveolae of 3T3-L1 mouse fibroblast cells was shown. Immunogold-labelled caveolin structures surrounded the basolateral region of deeply invaginated caveolae like a belt whereas in the apical region distal to the plasma membrane, the caveolin labelling was nearly absent. Shallow caveolar membranes showed a dispersed caveolin labelling. After membrane cholesterol reduction by methyl-ß-cyclodextrin treatment, a dynamic re-distribution of labelled caveolin 1 and a flattening of caveolar structures was found. The highly curved caveolar membrane got totally flat, and the initial belt-like caveolin labelling disintegrated to a ring-like structure and later to a dispersed order. Intramembrane particle-free domains were still observable after cholesterol depletion and caveolin re-distribution. These results indicate that cholesterol interacting with caveolin structures at the basolateral part of caveolae is necessary for the maintenance of the deeply invaginated caveolar membranes.  相似文献   

2.
Cholesterol-rich membrane microdomains (CRMMs) are specialized structures that have recently gained much attention in cell biology because of their involvement in cell signaling and trafficking. However, few investigations, particularly those addressing embryonic development, have succeeded in manipulating and observing CRMMs in living cells. In this study, we performed a detailed characterization of the CRMMs lipid composition during early frog development. Our data showed that disruption of CRMMs through methyl-β-cyclodextrin (MβCD) cholesterol depletion at the blastula stage did not affect Spemann's organizer gene expression and inductive properties, but impaired correct head development in frog and chick embryos by affecting the prechordal plate gene expression and cellular morphology. The MβCD anterior defect phenotype was recapitulated in head anlagen (HA) explant cultures. Culture of animal cap expressing Dkk1 combined with MβCD-HA generated a head containing eyes and cement gland. Together, these data show that during Xenopus blastula and gastrula stages, CRMMs have a very dynamic lipid composition and provide evidence that the secreted Wnt antagonist Dkk1 can partially rescue anterior structures in cholesterol-depleted head anlagen.  相似文献   

3.
Caveolin (CAV) is an essential component of caveolae, cholesterol-enriched invaginations of the plasma membrane of most mammalian cells. However, CAV is not restricted to plasma membrane caveolae, and pools of CAV are present in myriad intracellular membranes. CAV proteins tightly bind cholesterol and contribute to regulation of cholesterol fluxes and distributions within cells. In this context, we recently showed that CAV1 regulates the poorly understood process controlling mitochondrial cholesterol levels. Cholesterol accumulates in mitochondrial membranes in the absence of CAV1, promoting the organelle's dysfunction with important metabolic consequences for cells and animals. In this article, we suggest a working hypothesis that addresses the role of CAV1 within the homeostatic network that regulates the influx/efflux of mitochondrial cholesterol.  相似文献   

4.
Nitric oxide (NO) signaling is inextricably linked to both its physical and chemical properties. Due to its preferentially hydrophobic solubility, NO molecules tend to partition from the aqueous milieu into biological membranes. We hypothesized that plasma membrane ordering provided by cholesterol further couples the physics of NO diffusion with cellular signaling. Fluorescence lifetime quenching studies with pyrene liposome preparations showed that the presence of cholesterol decreased apparent diffusion coefficients of NO approximately 20-40%, depending on the phospholipid composition. Electrochemical measurements indicated that the diffusion rate of NO across artificial bilayer membranes were inversely related to cholesterol content. Sterol transport-defective Niemann-Pick type C1 (NPC1) fibroblasts exhibited increased plasma membrane cholesterol content but decreased activation of both intracellular soluble guanylyl cyclase and vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser(239) induced by exogenous NO exposure relative to their normal human fibroblast (NHF) counterparts. Augmentation of plasma membrane cholesterol in NHF diminished production of both cGMP and VASP phosphorylation elicited by NO to NPC1-comparable levels. Conversely, decreasing membrane cholesterol in NPC1 resulted in the augmentation in both cGMP and VASP phosphorylation to a level similar to those observed in NHF. Increasing plasma membrane cholesterol contents in NHF, platelets, erythrocytes and tumor cells also resulted in an increased level of extracellular diaminofluorescein nitrosation following NO exposure. These findings suggest that the impact of cholesterol on membrane fluidity and microdomain structure contributes to the spatial heterogeneity of NO diffusion and signaling.  相似文献   

5.
Caveolins are a family of proteins that coat the cytoplasmic face of caveolae, vesicular invaginations of the plasma membrane. These proteins are central to the organization of the proteins and lipids that reside in caveolae. Caveolins transport cholesterol to and from caveolae, and they regulate the activity of signaling proteins that reside in caveolae. Through studying the genes encoding the caveolae coat proteins, we have learned much about how they perform these multiple functions.  相似文献   

6.
Diabetes mellitus is a complex disorder that arises from various causes, including dysregulated glucose sensing and impaired insulin secretion (maturity onset diabetes of youth, MODY), autoimmune-mediated beta-cell destruction (type 1), or insufficient compensation for peripheral insulin resistance (type 2). Type 2 diabetes is the most prevalent form that usually occurs at middle age; it afflicts more than 30 million people over the age of 65, but is appearing with greater frequency in children and adolescents. Dysregulated insulin signaling exacerbated by chronic hyperglycemia promotes a cohort of systemic disorders--including dyslipidemia, hypertension, cardiovascular disease, and female infertility. Understanding the molecular basis of insulin resistance can prevent these disorders and their inevitable progression to type 2 diabetes.  相似文献   

7.
We previously demonstrated that CB1 receptor is palmitoylated at cysteine 415, and that such a post-translational modification affects its biological activity. To assess the molecular mechanisms responsible for modulation of CB1 receptor function by S-palmitoylation, in this study biochemical and morphological approaches were paralleled with computational analyses. Molecular dynamics simulations suggested that this acyl chain stabilizes helix 8 as well as the interaction of CB1 receptor with membrane cholesterol. In keeping with these in silico data, experimental results showed that the non-palmitoylated CB1 receptor was unable to interact efficaciously with caveolin 1, independently of its activation state. Moreover, in contrast with the wild-type receptor, the lack of S-palmitoylation in the helix 8 made the mutant CB1 receptor completely irresponsive to agonist-induced effects in terms of both lipid raft partitioning and receptor internalization. Overall, our results support the notion that palmitoylation of cysteine 415 modulates the conformational state of helix 8 and influences the interactions of CB1 receptor with cholesterol and caveolin 1, suggesting that the palmitoyl chain may serve as a functional interface for CB1 receptor localization and function.  相似文献   

8.
Endogenous GM3 synthesis and full N-glycosylation in membrane receptors occurred in "4-epimerase-less" ldlD (Krieger's CHO mutant) cells cultured in Gal-containing medium, whereby components of detergent-insoluble, low-density, buoyant membrane fraction, termed "glycolipid-enriched microdomain (GEM)," varied significantly by translocation into or out of GEM. Integrins alpha3 and alpha5 were translocated into GEM in the presence of 0.5 or 0.25% Triton X-100, particularly in the absence of Gal, whereby integrins are underglycosylated and GlcCer is the major glycolipid component in GEM. Src family kinase was translocated into and enriched in GEM fractions when prepared in 0.5 or 0.25% Triton X-100 from cells grown in Gal-containing medium, whereby GM3 synthesis is induced. In contrast, caveolin is highly enriched in GEM when GM3 synthesis does not occur, and is translocated into high-density membrane fraction when GM3 synthesis occurs. The results suggest that levels of key molecules controlling cell adhesion and signaling are defined by translocation into or out of GEM, which depends on glycosylation state.  相似文献   

9.
We have observed abnormally high membrane cholesterol levels and a subsequent deficiency of oxidative energy production in mitochondria from cultured Morris hepatoma cells (MH7777). Using cholesterol affinity chromatography and MALDI-TOF Mass Spectrometry, we have identified the voltage dependent anion channel (VDAC) as a necessary component of a protein complex involved in mitochondrial membrane cholesterol distribution. VDAC is known to associate strongly with hexokinase, particularly in glycolytic cancers. By constructing an E72Q mutant form of VDAC that inhibits its binding of hexokinase, we report an increase in oxidative phosphorylation activity of MH7777 cells, as well as reduced membrane cholesterol ratios to levels near that of normal liver mitochondria. This paper demonstrates that the ability of VDAC to influence mitochondrial membrane cholesterol distribution may have implications on mitochondrial characteristics such as oxidative phosphorylation and induction of apoptosis, as well as the propensity of cancer cells to exhibit a glycolytic phenotype.  相似文献   

10.
11.
Sperm cells represent a special exocytotic system since mature sperm cells contain only one large secretory vesicle, the acrosome, which fuses with the overlying plasma membrane during the fertilization process. Acrosomal exocytosis is believed to be regulated by activation of SNARE proteins. In this paper, we identified specific members of the SNARE protein family, i.e., the t-SNAREs syntaxin1 and 2, and the v-SNARE VAMP, present in boar sperm cells. Both syntaxins were predominantly found in the plasma membrane whereas v-SNAREs are mainly located in the outer acrosomal membrane of these cells. Under non-capacitating conditions both syntaxins and VAMP are scattered in well-defined punctate structures over the entire sperm head. Bicarbonate-induced in vitro activation in the presence of BSA causes a relocalization of these SNAREs to a more homogeneous distribution restricted to the apical ridge area of the sperm head, exactly matching the site of sperm zona binding and subsequent induced acrosomal exocytosis. This redistribution of syntaxin and VAMP depends on cholesterol depletion and closely resembles the previously reported redistribution of lipid raft marker proteins. Detergent-resistant membrane isolation and subsequent analysis shows that a significant proportion of syntaxin emerges in the detergent-resistant membrane (raft) fraction under such conditions, which is not the case under those conditions where cholesterol depletion is blocked. The v-SNARE VAMP displays a similar cholesterol depletion-dependent lateral and raft redistribution. Taken together, our results indicate that redistribution of syntaxin and VAMP during capacitation depends on association of these SNAREs with lipid rafts and that such a SNARE-raft association may be essential for spatial control of exocytosis and/or regulation of SNARE functioning.  相似文献   

12.
Membrane microdomains rich in cholesterol and sphingolipids, including gangliosides (GGs), are known to be important regions for cell signaling and binding sites for various pathogens. Cholesterol depletion inhibits the cellular entry of pathogens and also reduces inflammatory signals by disrupting microdomain structure. Our previous study showed that dietary gangliosides increased total ganglioside incorporation while decreasing cholesterol in the intestinal mucosa. We hypothesized that diet-induced reduction in cholesterol content in the intestinal mucosa disrupts microdomain structure resulting in reduced pro-inflammatory signals. Male weanling Sprague-Dawley rats were fed semipurified diets for 2 weeks. Experimental diets were formulated to include either ganglioside-enriched lipid (GG diet, 0.02% gangliosides [w/w of diet] ) or polyunsaturated fatty acid (PUFA diet, 1% arachidonic acid and 0.5% docosahexaenoic acid, w/w of total fat), in a control diet containing 20% fat. Levels of cholesterol, GG, caveolin, platelet activating factor (PAF), and diglyceride (DG) were measured in the microdomain isolated from the intestinal brush border. The GG diet increased total gangliosides by 50% with a relative increase in GD3 and a relative decrease in GM3. Cholesterol content was also reduced by 23% in the intestinal microdomain. These changes resulted in a significant decrease in the ratio of cholesterol to ganglioside. The GG diet and the PUFA diet were both associated with reduction in caveolin, PAF, and DG content in microdomains, whereas no change occurred in the ganglioside profile of animals fed the PUFA diet. Dietary gangliosides decrease the cholesterol/ganglioside ratio, caveolin, PAF and DG content in microdomains thus exerting a potential anti-inflammatory effect during gut development.  相似文献   

13.
Chromium GTP (CrGTP) has been used to probe the stereochemistry of metal-GTP binding to exchangeable site of tubulin and to examine the fate and role of nucleotide-bound metal ion in GTP hydrolysis associated with microtubule assembly. The absolute stereoconfiguration of the two pairs of diastereomers of beta,gamma-bidentate CrGTP has been determined by comparison of their visible circular dichroism spectra with those of the beta,gamma-CrATP isomers whose configurations have been established (Lin, I., and Dunaway-Mariano, D. (1988) J. Am. Chem. Soc. 110, 950-956). Tubulin binds metal-GTP preferentially in the delta pseudoaxial configuration. CrGTP-tubulin shows a high propensity to undergo tubulin-tubulin interactions with associated hydrolysis of CrGTP. Hydrolysis of CrGTP in microtubule assembly develops in two consecutive steps: cleavage of the gamma-phosphate followed by release of Pi and chromium. In contrast to other NTPases (actin, hexokinase) tubulin appears able to catalyze the dissociation of the stable chromium-phosphate bonds, which implies a highly nucleophilic environment of the binding site of the metal-triphosphate moiety of GTP. Microtubules assembled from CrGTP-tubulin are made of 90% GDP subunits, and their stability is linked to a 10% proportion of CrGDP-Pi subunits, scattered along the microtubule, from which Pi does not dissociate. The possibility is evoked that some tubulin variants do not catalyze release of Pi and metal ion efficiently, and their presence could affect microtubule dynamics.  相似文献   

14.
Small G-proteins belonging to the Arf (ADP-ribosylation factor) family serve as regulatory proteins for numerous cellular processes through GTP-dependent recruitment of effector molecules. In the present study we demonstrate that proteins in this family regulate, and are regulated by, membrane curvature. Arf1 and Arf6 were shown to load GTP in a membrane-curvature-dependent manner and stabilize, or further facilitate, changes in membrane curvature through the insertion of an amphipathic helix.  相似文献   

15.
How outer leaflet plasma membrane components, including glycosyl-phosphatidylinositol-anchored proteins (GPIAPs), transmit signals to the cell interior is an open question in membrane biology. By deliberately cross-linking several GPIAPs under antibody-conjugated 40-nm gold particles, transient anchorage of the gold particle-induced clusters of both Thy-1 and CD73, a 5' exonucleotidase, occurred for periods ranging from 300 ms to 10 s in fibroblasts. Transient anchorage was abolished by cholesterol depletion, addition of the Src family kinase (SFK) inhibitor PP2, or in Src-Yes-Fyn knockout cells. Caveolin-1 knockout cells exhibited a reduced transient anchorage time, suggesting the partial participation of caveolin-1. In contrast, a transmembrane protein, the cystic fibrosis transmembrane conductance regulator, exhibited transient anchorage that occurred without deliberately enhanced cross-linking; moreover, it was only slightly inhibited by cholesterol depletion or SFK inhibition and depended completely on the interaction of its PDZ-binding domain with the cytoskeletal adaptor EBP50. We propose that cross-linked GPIAPs become transiently anchored via a cholesterol-dependent SFK-regulatable linkage between a transmembrane cluster sensor and the cytoskeleton.  相似文献   

16.
17.
Several factors are known to stimulate cholesterol side-chain cleavage in isolated adrenal mitochondria, including steroidogenesis activator polypeptide (SAP), GTP, and sterol carrier protein2 (SCP2). All of these reportedly function at the level of the translocation of cholesterol to the inner membrane wherein side-chain cleavage to form pregnenolone occurs. We have investigated the activating effects of these factors alone and in combination. Under conditions where exogenous cholesterol is provided and multiple turnovers of a transport system are required, GTP stimulated steroidogenesis in isolated mitochondria and in adrenal homogenates, and this effect was enhanced by a GTP regenerating system. SAP alone had little effect under these conditions, but synergized with GTP to stimulate cholesterol metabolism. A truncated SAP analog and a variant from the C terminus of the minor heat-shock protein GRP78 had similar effects, but an unrelated peptide had no effect. GTP stimulated side-chain cleavage with the same EC50 in both resting mitochondria (from dexamethasone-treated rats) and in activated mitochondria (from ether-treated rats), but SAP effects were most apparent in resting mitochondria. In contrast, SCP2 stimulation was additive with other factors, suggesting an independent mechanism of action. While the data are consistent with biological roles for these factors, the relatively small magnitude of the in vitro effects may indicate that cell disruption and mitochondrial isolation disrupt important structural or other features which are necessary for the full expression of the steroidogenic response.  相似文献   

18.
19.
The endocytic compartment of eukaryotic cells is a complex intracellular structure involved in sorting, processing, and degradation of a great variety of internalized molecules. Recently, the uptake through caveolae has emerged as an alternative internalization pathway, which seems to be directly related with some signal transduction pathways. However, the mechanisms, molecules, and structures regulating the transport of caveolin from the cell surface into the endocytic compartment are largely unknown. In this study, normal quiescent fibroblasts (normal rat kidney (NRK)) were used to demonstrate that epidermal growth factor causes partial redistribution of caveolin from the cell surface into a cellubrevin early endocytic compartment. Treatment of NRK cells with cytochalasin D or latrunculin A inhibits this pathway and the concomitant activation of Mek and mitotic-activated protein (MAP) kinase; however, if cells were pre-treated with filipin, cytochalasin D does not inhibit the phosphorylation of MAP kinase induced by epidermal growth factor. From these results we conclude that in NRK cells the intact actin cytoskeleton is necessary for the EGF-mediated transport of caveolin from the cell surface into the early endocytic compartment and the activation of MAP kinase pathway.  相似文献   

20.
Lipid rafts are liquid ordered platforms that dynamically compartmentalize membranes. Caveolins and flotillins constitute a group of proteins that are enriched in these domains. Caveolin-1 has been shown to be an essential component of caveolae. Flotillins were also discovered as an integral component of caveolae and have since been suggested to interact with caveolins. However, flotillins are also expressed in non-caveolae-containing cells such as lymphocytes and neuronal cells. Hence, a discrepancy exists in the literature regarding the caveolin dependence of flotillin expression and their subcellular localization. To address this controversy, we used mouse embryonic fibroblasts (MEFs) from caveolin-1 knockout (Cav-1(-/-)) and wild-type mice to study flotillin expression and localization. Here we show that both membrane association and lipid raft partitioning of flotillins are not perturbed in Cav-1(-/-) MEFs, whereas membrane targeting and raft partitioning of caveolin-2, another caveolin family protein, is severely impaired. Moreover, we demonstrate that flotillin-1, but not flotillin-2, associates with lipid droplets upon oleic acid treatment and that this association is completely independent of caveolin. Taken together, our results show that flotillins are localized in lipid rafts independent of caveolin-1 and that translocation of flotillin-1 to lipid droplets is a caveolin-independent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号