首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acute graft-versus-host disease (GVHD) generated in BDF1 mice by the injection of spleen cells from the C57BL/6 parental strain induces a direct cell-mediated attack on host lymphohematopoietic populations, resulting in the reconstitution of the host with donor hematopoietic stem cells. We examined the effect of GVHD on the donor and host hematopoiesis in parental-induced acute GVHD. The bone marrow was hypoplastic and the number of hematopoietic progenitor cells significantly decreased at 4 weeks after GVHD induction. However, extramedullary splenic hematopoiesis was present and the number of hematopoietic progenitor cells in the spleen significantly increased at this time. Fas expression on the host spleen cells and bone marrow cells significantly increased during weeks 2 to 8 of GVHD. Host cell incubation with anti-Fas Ab induced apoptosis, and the number of hematopoietic progenitor cells decreased during these weeks. A significant correlation between the augmented Fas expression on host bone marrow cells and the decreased number of host bone marrow cells by acute GVHD was observed. Furthermore, the injection of Fas ligand (FasL)-deficient B6/gld spleen cells failed to affect host bone marrow cells. Although Fas expression on repopulating donor cells also increased, Fas-induced apoptosis by the repopulating donor cells was not remarkable until 12 weeks, when more than 90% of the cells were donor cells. The number of hematopoietic progenitor cells in the bone marrow and the spleen by the repopulating donor cells, however, decreased over an extended time during acute GVHD. This suggests that Fas-FasL interactions may regulate suppression of host hematopoietic cells but not of donor hematopoietic cells. Hematopoietic dysfunctions caused by the reconstituted donor cells are independent to Fas-FasL interactions and persisted for a long time during parental-induced acute GVHD.  相似文献   

2.
The platelet glycoprotein IIb (alpha(IIb); CD41) constitutes the alpha subunit of a highly expressed platelet surface integrin protein. We demonstrate that CD41 serves as the earliest marker of primitive erythroid progenitor cells in the embryonic day 7 (E7.0) yolk sac and high-level expression identifies essentially all E8.25 yolk sac definitive hematopoietic progenitors. Some definitive hematopoietic progenitor cells in the fetal liver and bone marrow also express CD41. Hematopoietic stem cell competitive repopulating ability is present in CD41(dim) and CD41(lo/-) cells isolated from bone marrow and fetal liver cells, however, activity is enriched in the CD41(lo/-) cells. CD41(bright) yolk sac definitive progenitor cells co-express CD61 and bind fibrinogen, demonstrating receptor function. Thus, CD41 expression marks the onset of primitive and definitive hematopoiesis in the murine embryo and persists as a marker of some stem and progenitor cell populations in the fetal liver and adult marrow, suggesting novel roles for this integrin.  相似文献   

3.
In this study, we have characterized the early steps of hematopoiesis during embryonic stem cell differentiation. The immunophenotype of hematopoietic progenitor cells derived from murine embryonic stem cells was determined using a panel of monoclonal antibodies specific for hematopoietic differentiation antigens. Surprisingly, the CD41 antigen (alphaIIb integrin, platelet GPIIb), essentially considered to be restricted to megakaryocytes, was found on a large proportion of cells within embryoid bodies although very few megakaryocytes were detected. In clonogenic assays, more than 80% of all progenitors (megakaryocytic, granulo-macrophagic, erythroid and pluripotent) derived from embryoid bodies expressed the CD41 antigen. CD41 was the most reliable marker of early steps of hematopoiesis. However, CD41 remained a differentiation marker because some CD41(-) cells from embryoid bodies converted to CD41(+) hematopoietic progenitors, whereas the inverse switch was not observed. Immunoprecipitation and western blot analysis confirmed that CD41 was present in cells from embryoid bodies associated with CD61 (beta3 integrin, platelet GPIIIa) in a complex. Analysis of CD41 expression during ontogeny revealed that most yolk sac and aorta-gonad-mesonephros hematopoietic progenitor cells were also CD41(+), whereas only a minority of bone marrow and fetal liver hematopoietic progenitors expressed this antigen. Differences in CD34 expression were also observed: hematopoietic progenitor cells from embryoid bodies, yolk sac and aorta-gonad-mesonephros displayed variable levels of CD34, whereas more than 90% of fetal liver and bone marrow progenitor cells were CD34(+). Thus, these results demonstrate that expression of CD41 is associated with early stages of hematopoiesis and is highly regulated during hematopoietic development. Further studies concerning the adhesive properties of hematopoietic cells are required to assess the biological significance of these developmental changes.  相似文献   

4.
5.
We examined the expression of VCAM-1 and MAdCAM-1 after bone marrow transplantation (BMT). We also examined the influence of alpha(4)beta(7) integrin blockade on the homing of cells to the bone marrow and spleen. The expression of VCAM-1 and MAdCAM-1 by endothelial cells in the spleen and bone marrow was examined by immunoelectron microscopy using colloidal gold and was analyzed semiquantitatively. To examine the role of alpha(4)beta(7) integrin in donor cells, a homing assay was conducted following alpha(4)beta(7) integrin blockade in bone marrow-derived hematopoietic cells or spleen colony cells. Immediately after BMT, the expression of VCAM-1 and MAdCAM1 markedly decreased, but expression recovered significantly between 12 and 24 h after BMT. VCAM-1 recovered more acutely than MAdCAM-1 from 12 h onward. In the group transplanted with anti-alpha(4)beta(7) integrin antibody-treated bone marrow cells, the numbers of homing cells in the spleen and bone marrow were significantly decreased in an antibody dose-dependent manner. However, the number of homing cells was not different in either the spleen or bone marrow between anti-alpha(4)beta(7) integrin antibody treated and untreated spleen colony cells. It has been reported that alpha(4)beta(1) integrin and its receptor VCAM-1 play major roles in the homing of hematopoietic cells to bone marrow. Our study indicates the importance of MAdCAM-1 and its ligand, alpha(4)beta(7) integrin, in the homing of bone marrow-derived hematopoietic cells, but not spleen colony-derived cells, to both the spleen and bone marrow.  相似文献   

6.
The Mixed Lineage Leukemia (MLL) gene is essential for embryonic hematopoietic stem cell (HSC) development, but its role during adult hematopoiesis is unknown. Using an inducible knockout model, we demonstrate that Mll is essential for the maintenance of adult HSCs and progenitors, with fatal bone marrow failure occurring within 3 weeks of Mll deletion. Mll-deficient cells are selectively lost from mixed bone marrow chimeras, demonstrating their failure to self-renew even in an intact bone marrow environment. Surprisingly, HSCs lacking Mll exhibit ectopic cell-cycle entry, resulting in the depletion of quiescent HSCs. In contrast, Mll deletion in myelo-erythroid progenitors results in reduced proliferation and reduced response to cytokine-induced cell-cycle entry. Committed lymphoid and myeloid cells no longer require Mll, defining the early multipotent stages of hematopoiesis as Mll dependent. These studies demonstrate that Mll plays selective and independent roles within the hematopoietic system, maintaining quiescence in HSCs and promoting proliferation in progenitors.  相似文献   

7.
The development of early B cells, which are generated from hematopoietic stem cells (HSCs) in a series of well-characterized stages in bone marrow (BM), represents a paradigm for terminal differentiation processes. Akt is primarily regulated by phosphorylation at Thr308 by PDK1 and at Ser473 by mTORC2, and Akt signaling plays a key role in hematopoiesis. However, the role of mTORC2 in the development of early B cells remains poorly understood. In this study, we investigated the functional role of mTORC2 by specifically deleting an integral component, Rictor, in a hematopoietic system. We demonstrated that the deletion of Rictor induced an aberrant increase in the FoxO1 and Rag-1 proteins in BM B cells and that this increase was accompanied by a significant decrease in the abundance of B cells in the peripheral blood (PB) and the spleen, suggesting impaired development of early B cells in adult mouse BM. A BM transplantation assay revealed that the B cell differentiation defect induced by Rictor deletion was not affected by the BM microenvironment, thus indicating a cell-intrinsic mechanism. Furthermore, the knockdown of FoxO1 in Rictor-deleted HSCs and hematopoietic progenitor cells (HPCs) promoted the maturation of B cells in the BM of recipient mice. In addition, we revealed that treatment with rapamycin (an mTORC1 inhibitor) aggravated the deficiency in B cell development in the PB and BM. Taken together, our results provide further evidence that Rictor regulates the development of early B cells in a cell-intrinsic manner by modifying the expression of FoxO1 and Rag-1.  相似文献   

8.
CXXC finger protein 1 (Cfp1), encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals. Induction of Cre expression in adult animals led to Cfp1 depletion in hematopoietic cells, a failure of hematopoiesis with a nearly complete loss of lineage-committed progenitors and mature cells, elevated levels of apoptosis, and death within two weeks. A similar pathology resulted following transplantation of conditional Cxxc1 bone marrow cells into wild type recipients, demonstrating this phenotype is intrinsic to Cfp1 function within bone marrow cells. Remarkably, the LinSca-1+c-Kit+ population of cells in the bone marrow, which is enriched for hematopoietic stem cells and multi-potential progenitor cells, persists and expands in the absence of Cfp1 during this time frame. Thus, Cfp1 is necessary for hematopoietic stem and multi-potential progenitor cell function and for the developmental potential of differentiating hematopoietic cells.  相似文献   

9.
The number and self‐renewal capacity of hematopoietic stem cells (HSCs) are tightly regulated at different developmental stages. Many pathways have been implicated in regulating HSC development in cell autonomous manners; however, it remains unclear how HSCs sense and integrate developmental cues. In this study, we identified an extrinsic mechanism by which HSC number and functions are regulated during mouse puberty. We found that the HSC number in postnatal bone marrow reached homeostasis at 4 weeks after birth. Luteinizing hormone, but not downstream sex hormones, was involved in regulating HSC homeostasis during this period. Expression of luteinizing hormone receptor (Lhcgr) is highly restricted in HSCs and multipotent progenitor cells in the hematopoietic hierarchy. When Lhcgr was deleted, HSCs continued to expand even after 4 weeks after birth, leading to abnormally elevated hematopoiesis and leukocytosis. In a murine acute myeloid leukemia model, leukemia development was significantly accelerated upon Lhcgr deletion. Together, our work reveals an extrinsic counting mechanism that restricts HSC expansion during development and is physiologically important for maintaining normal hematopoiesis and inhibiting leukemogenesis.  相似文献   

10.
In vertebrates the extraembryonic mesoderm of the yolk sac (YS) is the first site during embryogenesis where morphologically discernible hematopoiesis may be found. Later hematopoiesis shifts into the embryo proper, first to the liver, the major fetal hematopoietic site, then to definitive hematopoietic territories, the spleen and bone marrow. It is widely accepted that in the mouse this picture reflects the migration of pluripotent hematopoietic stem cells (HSC) from the YS accompanied by subsequent colonization of the hematopoietic tissues during embryogenesis. However, there is no conclusive evidence showing unequivocally the initiating role of the YS in murine adult hematopoiesis. Recently, we have demonstrated the important role of embryo body tissues in the development of CFU-S before the establishment of definitive hematopoiesis in the fetal liver. This finding suggests that the early development of the hematopoietic system in the mouse is more complex than has been previously proposed and we consider here the early hematopoietic events in the developing mouse embryo.  相似文献   

11.
Cytokine signaling pathways are important in promoting hematopoietic stem cell (HSC) self-renewal, proliferation and differentiation. Mpl receptor and its ligand, TPO, have been shown to play an essential role in the early steps of adult hematopoiesis. We previously demonstrated that the cytoplasmic domain of Mpl promotes hematopoietic commitment of embryonic stem cells in vitro, and postulated that Mpl could be important in the establishment of definitive hematopoiesis. To answer this question, we investigated the temporal expression of Mpl during mouse development by in situ hybridization. We found Mpl expression in the HSCs clusters emerging in the AGM region, and in the fetal liver (FL) as early as E10.5. Using Mpl(-/-) mice, the functional relevance of Mpl expression was tested by comparing the hematopoietic progenitor (HP) content, long-term hematopoietic reconstitution (LTR) abilities and HSC content of control and Mpl(-/-) embryos at different times of development. In the AGM, we observed delayed production of HSCs endowed with normal LTR but presenting a self-renewal defect. During FL development, we detected a decrease in HP and HSC potential associated with a defect in amplification and self-renewal/survival of the lin(-) AA4.1(+) Sca1(+) population of HSCs. These results underline the dual role of Mpl in the generation and expansion of HSCs during establishment of definitive hematopoiesis.  相似文献   

12.
Ankyrin repeat and LEM-domain containing protein 1 (ANKLE1) is a GIY-YIG endonuclease with unknown functions, mainly expressed in mouse hematopoietic tissues. To test its potential role in hematopoiesis we generated Ankle1-deficient mice. Ankle1Δ/Δ mice are viable without any detectable phenotype in hematopoiesis. Neither hematopoietic progenitor cells, myeloid and lymphoid progenitors, nor B and T cell development in bone marrow, spleen and thymus, are affected in Ankle1Δ/Δ-mice. Similarly embryonic stress erythropoiesis in liver and adult erythropoiesis in bone marrow and spleen appear normal. To test whether ANKLE1, like the only other known GIY-YIG endonuclease in mammals, SLX1, may contribute to Holliday junction resolution during DNA repair, Ankle1-deficient cells were exposed to various DNA-damage inducing agents. However, lack of Ankle1 did not affect cell viability and, unlike depletion of Slx1, Ankle1-deficiency did not increase sister chromatid exchange in Bloom helicase-depleted cells. Altogether, we show that lack of Ankle1 does neither affect mouse hematopoiesis nor DNA damage repair in mouse embryonic fibroblasts, indicating a redundant or non-essential function of ANKLE1 in mouse.  相似文献   

13.
Human bone marrow cells expressing CD34 but not HLA-DR were isolated by immunofluorescence flow cytometric cell sorting. These cells contained a hematopoietic cell (CFU-B1) capable of producing, in an in vitro semisolid culture system, blast-cell-containing colonies, which possessed the capacity for self-renewal and commitment to multipotential differentiation. In addition, CD34+ HLA-DR- marrow cells contained primitive megakaryocyte progenitor cells, the burst-forming unit-megakaryocyte (BFU-MK). A subset of CD34+ HLA-DR- marrow cells lacking the expression of CD15 and CD71 was obtained by flow cytometric cell sorting and was capable of sustaining in vitro hematopoiesis in suspension culture for up to 8 weeks in the absence of a preestablished adherent marrow cell layer. The combination of IL-3 + IL-1 alpha and IL-3 + IL-6 sustained proliferation of these cells for 8 weeks, induced maximal cellular expansion, and increased the numbers of assayable progenitor cells. These studies demonstrate that human CD34+ HLA-DR- marrow cells and their subsets contain primitive multipotential hematopoietic cells capable of self-renewal and of differentiation into multiple hematopoietic lineages.  相似文献   

14.
BACKGROUND: Psychological stress induces rapid and long-lasting changes in blood cell composition, implying the existence of stress-induced factors that modulate hematopoiesis. Here we report the involvement of the stress-associated "readthrough" acetylcholinesterase (AChE-R) variant, and its 26 amino acid C-terminal domain (ARP) in hematopoietic stress responses. MATERIALS AND METHODS: We studied the effects of stress, cortisol, antisense oligonucleotides to AChE, and synthetic ARP on peripheral blood cell composition and clonogenic progenitor status in mice under normal and stress conditions, and on purified CD34 cells of human origin. We employed in situ hybridization and immunocytochemical staining to monitor gene expression, and 5-bromo-2-deoxyuridine (BrdU), primary liquid cultures, and clonogenic progenitor assays to correlate AChE-R and ARP with proliferation and differentiation of hematopoietic progenitors. RESULTS: We identified two putative glucocorticoid response elements in the human ACHE gene encoding AChE. In human CD34+ hematopoietic progenitor cells, cortisol elevated AChE-R mRNA levels and promoted hematopoietic expansion. In mice, a small peptide crossreacting with anti-ARP antiserum appeared in serum following forced swim stress. Ex vivo, ARP was more effective than cortisol and equally as effective as stem cell factor in promoting expansion and differentiation of early hematopoietic progenitor cells into myeloid and megakaryocyte lineages. CONCLUSIONS: Our findings attribute a role to AChE-R and ARP in hematopoietic homeostasis following stress, and suggest the use of ARP in clinical settings where ex vivo expansion of progenitor cells is required.  相似文献   

15.
Bone marrow is the main site for hematopoiesis in adults. It acts as a niche for hematopoietic stem cells (HSCs) and contains non‐hematopoietic cells that contribute to stem cell dormancy, quiescence, self‐renewal, and differentiation. HSC also exist in resting spleen of several species, although their contribution to hematopoiesis under steady‐state conditions is unknown. The spleen can however undergo extramedullary hematopoiesis (EMH) triggered by physiological stress or disease. With the loss of bone marrow niches in aging and disease, the spleen as an alternative tissue site for hematopoiesis is an important consideration for future therapy, particularly during HSC transplantation. In terms of harnessing the spleen as a site for hematopoiesis, here the remarkable regenerative capacity of the spleen is considered with a view to forming additional or ectopic spleen tissue through cell engraftment. Studies in mice indicate the potential for such grafts to support the influx of hematopoietic cells leading to the development of normal spleen architecture. An important goal will be the formation of functional ectopic spleen tissue as an aid to hematopoietic recovery following clinical treatments that impact bone marrow. For example, expansion or replacement of niches could be considered where myeloablation ahead of HSC transplantation compromises treatment outcomes.  相似文献   

16.
The predominant T cell subset in the bone marrow of specific pathogen-free C57BL/Ka and BALB/c mice expressed the alpha beta+ TCR CD4- CD8- surface phenotype. Purified C57BL/Ka alpha beta+ TCR CD4- CD8- marrow cells obtained by cell sorting suppressed the MLR of C57BL/Ka responder and BALB/c stimulator spleen cells. Although the percentage of typical T cells in the spleen was markedly reduced in adult nude mice or normal neonatal mice as compared to the normal adult, the percentage of alpha beta+ TCR CD4- CD8- cells in the spleen and marrow was not. The percentage of "self-reactive" V beta 5+ T cells in the BALB/c spleen was markedly reduced as compared to that in the C57BL/Ka spleen. However, the percentages in the bone marrow were similar. The results indicate that the predominant subset of marrow T cells in these pathogen-free mice differ with regard to surface marker phenotype, function, dependence on the adult thymus, and deletion of certain self-reactive V beta receptors as compared to typical spleen T cells. The marrow T cells appear to develop directly from marrow precursors without rearranged beta chain genes during a 48 hour in vitro culture.  相似文献   

17.
Hematopoietic stem cells (HSC) must engage in a life-long balance between self-renewal and differentiation to sustain hematopoiesis. The highly conserved PIWI protein family regulates proliferative states of stem cells and their progeny in diverse organisms. A Human piwi gene (for clarity, the non-italicized “piwi” refers to the gene subfamily), HIWI (PIWIL1), is expressed in CD34+ stem/progenitor cells and transient expression of HIWI in a human leukemia cell line drastically reduces cell proliferation, implying the potential function of these proteins in hematopoiesis. Here, we report that one of the three piwi genes in mice, Miwi2 (Piwil4), is expressed in primitive hematopoetic cell types within the bone marrow. Mice with a global deletion of all three piwi genes, Miwi, Mili, and Miwi2, are able to maintain long-term hematopoiesis with no observable effect on the homeostatic HSC compartment in adult mice. The PIWI-deficient hematopoetic cells are capable of normal lineage reconstitution after competitive transplantation. We further show that the three piwi genes are dispensable during hematopoietic recovery after myeloablative stress by 5-FU. Collectively, our data suggest that the function of the piwi gene subfamily is not required for normal adult hematopoiesis.  相似文献   

18.
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are highly related viruses that differ in disease manifestation. HTLV-1 is the etiologic agent of adult T-cell leukemia and lymphoma, an aggressive clonal malignancy of human CD4-bearing T lymphocytes. Infection with HTLV-2 has not been conclusively linked to lymphoproliferative disorders. We previously showed that human hematopoietic progenitor (CD34(+)) cells can be infected by HTLV-1 and that proviral sequences were maintained after differentiation of infected CD34(+) cells in vitro and in vivo. To investigate the role of the Tax oncoprotein of HTLV on hematopoiesis, bicistronic lentiviral vectors were constructed encoding the HTLV-1 or HTLV-2 tax genes (Tax1 and Tax2, respectively) and the green fluorescent protein marker gene. Human hematopoietic progenitor (CD34(+)) cells were infected with lentivirus vectors, and transduced cells were cultured in a semisolid medium permissive for the development of erythroid, myeloid, and primitive progenitor colonies. Tax1-transduced CD34(+) cells displayed a two- to fivefold reduction in the total number of hematopoietic clonogenic colonies that arose in vitro, in contrast to Tax2-transduced cells, which showed no perturbation of hematopoiesis. The ratio of colony types that developed from Tax1-transduced CD34(+) cells remained unaffected, suggesting that Tax1 inhibited the maturation of relatively early, uncommitted hematopoietic stem cells. Since previous reports have linked Tax1 expression with initiation of apoptosis, lentiviral vector-mediated transduction of Tax1 or Tax2 was investigated in CEM and Jurkat T-cell lines. Ectopic expression of either Tax1 or Tax2 failed to induce apoptosis in T-cell lines. These data demonstrate that Tax1 expression perturbs development and maturation of pluripotent hematopoietic progenitor cells, an activity that is not displayed by Tax2, and that the suppression of hematopoiesis is not attributable to induction of apoptosis. Since hematopoietic progenitor cells may serve as a latently infected reservoir for HTLV infection in vivo, the different abilities of HTLV-1 and -2 Tax to suppress hematopoiesis may play a role in the respective clinical outcomes after infection with HTLV-1 or -2.  相似文献   

19.
20.
Lymphoid and myeloid cells isolated from second trimester fetal lymphoid organs were characterized by utilizing a panel of monoclonal antibodies that define human lineage-restricted, differentiation, histocompatibility, and activation antigens. At distinct gestational stages, the appearance of morphologically identifiable lymphoid and myeloid cells paralleled the appearance of cells expressing definable lymphoid and myeloid antigens. The proportion of cells in fetal liver, bone marrow, and spleen that expressed histocompatibility, myeloid, and B cell antigens increased with fetal maturation. In contrast, even the earliest fetal thymuses studied were of a phenotype no different than that seen during later stages of ontogeny. Although the cellular lineage of most fetal hematopoietic cells could be identified by this panel of reagents, a considerable number of fetal liver and bone marrow cells did not express any of these antigens, suggesting the possibility that they might represent early hematopoietic progenitor cells. These studies support the notion that the adult cellular phenotype is the result of both an orderly acquisition of differentiation antigens and the migration of these primitive cellular populations to specific fetal organs. Identification of hematopoietic progenitors in fetal tissues may facilitate the identification and isolation of early lymphoid and myeloid progenitor cells in adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号