首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemidesmosomes (HDs) are cellular junctions that anchor epithelial cells to the extracellular matrix (ECM) and are associated morphologically with the cytoskeleton. Hemidesmosomal molecular components include two proteins involved in linking intermediate filaments, HD1/plectin and BP230, and two transmembrane proteins, BP180 and the alpha6beta4 integrin, a laminin receptor. In cells lacking BP230 and BP180, HD1/plectin still associates with alpha6beta4 integrin, forming HD-like structures, called type II HDs. In the present study, we used an intestinal epithelial cell line that expresses HD1/plectin and the alpha6beta4 integrin to investigate the regulation of assembly of these proteins in type II HDs. These compounds were found to be clustered at sites of cell-ECM contact and their polarized localization was influenced by either cell confluency or extracellular matrix deposition. Conventional and immunoelectron microscopy showed that HD1/plectin and the beta4 integrin subunit are colocalized in an adhesion structure. Using cytoskeleton-disrupting drugs and confocal microscopy, we demonstrated that type II HDs are made up of numerous individual plaques whose assembly into a cluster requires actin filaments, but not microtubules.  相似文献   

2.
Epithelial cells attach to the basement membrane through adhesive contacts between the basal cells of the epithelium and the proteins of the extracellular matrix (ECM). The hemidesmosome (HD) is a specialized cell-ECM contact, that mediates the attachment of the epithelial cell basal surface to the ECM. In bronchial epithelial cells, the protein components that constitute the HD have not been demonstrated. Using immunohistochemical techniques, we determined that normal human bronchial epithelial (NHBE) cells express the HD cell surface integrin alpha6beta4 and produce laminin 5, the ECM protein associated with HDs. Furthermore, expression of the HD-associated structural proteins, bullous pemphigoid antigens 1 (BPAG 1) and 2 (BPAG 2), was demonstrated in NHBE cells by immunofluorescence microscopy and immunoblot analyses. In addition, we confirmed the presence of laminin 5 in the basement membrane (BM) of bronchial epithelial biopsy specimens and of BP230, BP180, and the alpha6beta4 integrin heterodimer at the site of bronchial epithelial cell-ECM interaction in vivo. Finally, using electron microscopy, we were able to demonstrate intact HDs in a glutaraldehyde-fixed NHBE cell monolayer. These findings suggest that bronchial epithelium forms HDs and that the laminin 5-alpha6beta4 integrin interaction may be important in stabilizing epithelial cell adhesion to the BM in the lung.  相似文献   

3.
We studied the distributions of laminin-5 and hemidesmosome components, HD1/plectin and BP230, in the submandibular glands of adult and developing mice. In adult mice, laminin-5 was expressed in the basement membranes of both the myoepithelial cells and excretory ducts. The former expression was predictable because laminin-5 is a ligand for hemidesmosomes, which appear in myoepithelial cells and stratified epithelium. However, the latter expression pattern suggested that the non-stratified epithelium of the excretory duct might also be associated with hemidesmosomes. During fetal development, laminin-5 was found in the basement membrane of developing ducts but not epithelial end buds in which future lobules are formed by epithelial branching. The expression of HD1/plectin but not BP230 was noted in the developing duct at early embryonic stages, indicating the presence of type II hemidesmosomes. Expression of BP230 appeared in the excretory duct epithelium at around the day of birth. At this stage, the typical hemidesmosome was observed in the duct epithelium. Our results suggest that laminin-5 is involved in duct development rather than epithelial branching. The results also suggest that the developing duct epithelium interacts with laminin-5 through the type II hemidesmosome, which later matures into a typical hemidesmosome upon the onset of expression of BP230. Accepted: 12 October 1999  相似文献   

4.
T Volk  O Cohen  B Geiger 《Cell》1987,50(6):987-994
Cultured cells from either chicken lens or liver plated on solid substrates form flat epithelial sheets with adherens-type junctions between them. In lens cells these junctions contain A-CAM, while the same type of intercellular junctions in liver cells contain another cell adhesion molecule, L-CAM. Coculturing of lens and liver cells in the same dish resulted in the formation of mixed (heterotypic) adherens junctions. Double immunofluorescent labeling for both A-CAM and L-CAM indicated that the mixed junctions contained both molecules, each of which was present on one of the two partner cells. Moreover, the formation of the heterotypic junctions could be effectively inhibited by both anti-A-CAM and anti-L-CAM antibodies. It has thus been proposed that A-CAM and L-CAM share significant functional homology and may be involved in heterophilic interactions leading to the establishment of molecularly and cellularly asymmetrical adherens-type junctions.  相似文献   

5.
《The Journal of cell biology》1986,103(4):1451-1464
Intercellular adherens junctions between cultured lens epithelial cells are highly Ca2+-dependent and are readily dissociated upon chelation of extracellular Ca2+ ions. Addition of Ca2+ to EGTA-treated cells results in the recovery of cell-cell junctions including the reorganization of adherens junction-specific cell adhesion molecule (A-CAM), vinculin, and actin (Volk, T., and B. Geiger, 1986, J. Cell Biol., 103:000-000). Incubation of cells during the recovery phase with Fab' fragments of anti-A-CAM specifically inhibited the re-formation of cell-cell adherens junctions. This inhibition was accompanied by remarkable changes in microfilament organization manifested by an apparent deterioration of stress fibers and the appearance of fragmented actin bundles throughout the cytoplasm. Incubation of EGTA-dissociated cells with intact divalent anti-A-CAM antibodies in normal medium had no apparent inhibitory effect on junction formation and did not affect the assembly of actin microfilament bundles. Moreover, adherens junctions formed in the presence of the divalent antibodies became essentially Ca2+-independent, suggesting that cell-cell adhesion between them was primarily mediated by the antibodies. These studies suggest that A-CAM participates in intercellular adhesion in adherens-type junctions and point to its involvement in microfilament bundle assembly.  相似文献   

6.
Adherens junctions facilitate and maintain epithelial cell-cell adhesion. This is true of mammary epithelial cells, both in two dimensional monolayers and in three-dimensional basement membrane cultures. Using the immortalized, functional mouse mammary epithelial scp2 cell line, we found that pharmacological inhibition of phosphatidylinositol 3-kinase (PI3-kinase) disrupted adherens junctions. In monolayers, this disruption was associated with decreased E-cadherin and beta-catenin at sites of cell-cell contact and decreased association of both proteins with the cytoskeleton. Changes in the distribution of f-actin after PI3-kinase inhibition suggest that this disruption of adherens junctions may be mediated by alterations to the cytoskeleton. In basement membrane cultures, PI3-kinase inhibition reversibly prevented adherens junction-dependent spheroid formation and differentiative milk protein gene expression, both in scp2 cells and in a second mouse mammary epithelial cell line, EpH4. Decreasing the calcium concentration in the culture medium produced similar, although less dramatic, phenotypic effects. These data indicate that adherens junctions contribute, at least in part, to the efficient induction of basement membrane-dependent differentiation of mammary epithelial cells.  相似文献   

7.
We studied the localization of the epidermal growth factor (EGF) in eccrine and apocrine sweat glands with light microscopic and electron microscopic immunohistochemistry. Anti-human EGF (anti-hEGF) polyclonal antiserum and anti-hEGF monoclonal antibody (MAb) were used for the study. Light microscopic immunohistochemistry with monoclonal and polyclonal antibodies showed that hEGF-like immunoreactivity was strongly positive in the myoepithelial cells and weakly positive in the secretory cells of eccrine sweat glands. In apocrine sweat glands, it was strongly positive in the secretory cells as well as in the myoepithelial cells. Immunoelectron microscopy with polyclonal antibody showed that hEGF-like immunoreactivity was present in secretory granules of apocrine secretory cells. These granules had mitochondrion-like internal structure. No reactivity was observed on the eccrine secretory cells by immunoelectron microscopy. Neither dark cell granules nor mitochondria in eccrine secretory cells were labeled with anti-hEGF antibody. In both eccrine and apocrine sweat glands, hEGF-like immunoreactivity was diffusely present in the cytoplasm of myoepithelial cells. However, nuclei and mitochondria of myoepithelial cells were devoid of immunoreactivity for hEGF. Our observations indicate that apocrine sweat glands may secrete more hEGF in the sweat than eccrine sweat glands.  相似文献   

8.
We describe here the purification and characterization of a recently identified adherens junction protein that has an apparent molecular mass of 82 kDa on sodium dodecyl sulfate-polyacrylamide gels (Beckerle, M. C. (1986) J. Cell Biol. 103, 1679-1687). The 82-kDa protein was isolated from avian smooth muscle by a low ionic strength alkaline pH extraction followed by ammonium sulfate fractionation. Sequential chromatographic separation using DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite resins results in a purified 82-kDa protein. The 82-kDa protein has a Stokes radius of 5.6 nm and a relative sedimentation coefficient of 3.0 S. The calculated native molecular mass of the protein based on its hydrodynamic properties is 69 kDa, and the derived frictional ratio (f/fo) is 2.1. The protein does not focus discretely by isoelectric-focusing-sodium dodecyl sulfate-polyacrylamide gel electrophoresis; there are numerous isoelectric point variants in the range of 6.4-7.2, with the average isoelectric point being 6.9. The 82-kDa protein is phosphorylated in vivo and appears to be a cytoplasmic component of adherens junctions. The properties of the 82-kDa protein distinguish it from other known adherens junction proteins of this molecular mass. In fibroblasts, the 82-kDa protein is found in adhesion plaques as well as along actin-containing stress fibers near where they terminate at sites of cell-substratum adhesion. It is also found in the cell-cell adherens junctions of pigmented retinal epithelial cells and the dense plaques of smooth muscle cells. Since the 82-kDa protein is found at both cell-substratum and cell-cell adherens junctions, we propose to call it zyxin, meaning a joining, to indicate that it is found at regions where extracellular ligands are structurally and functionally joined to the cytoskeleton.  相似文献   

9.
We have previously identified two genes (EMS1 and PRAD1/cyclin D1) in the chromosome 11q13 region that are frequently coamplified and overexpressed in human breast cancer and in squamous cell carcinomas of the head and neck (E. Schuuring, E. Verhoeven, W.J. Mooi, and R.J.A.M. Michalides, Oncogene 7:355-361, 1992). We now report on the characterization of the 80/85-kDa protein that is encoded by the EMS1 gene. Amino acid sequence comparison shows a high homology (85%) to a chicken protein that was recently identified as a substrate for the src oncogene (H. Wu, A.B. Reynolds, S.B. Kanner, R.R. Vines, and J.T. Parsons, Mol. Cell. Biol. 11:5113-5124, 1991). Immunocytochemistry reveals that in epithelial cells, the human EMS1 protein is localized mainly in the cytoplasm and, to a very low extent, in protruding leading lamellae of the cell. However, in carcinoma cells that constitutively overexpress the protein as a result of amplification of the EMS1 gene, the protein, except in cytoplasm, accumulates in the podosome-like adherens junctions associated with the cell-substratum contact sites. The protein was not found in intercellular adherens junctions. Our findings, and the previously reported observations in src-transformed chicken embryo fibroblasts, suggest that the EMS1 protein is involved in regulating the interactions between components of adherens-type junctions. Since amplification of the 11q13 region has been associated with an enhanced invasive potential of these tumors, overexpression and concomitant accumulation of the EMS1 protein in the cell-substratum contact sites might, therefore, contribute to the invasive potential of these tumor cells.  相似文献   

10.
Calcium-induced assembly of adherens junctions in keratinocytes   总被引:11,自引:10,他引:1       下载免费PDF全文
Extracellular calcium concentration has been shown to control the stratification of cultured keratinocytes, presumably by regulation of formation of desmosomes. Previous studies have shown that keratinocytes cultured in medium containing 0.1 mM Ca++ form loose colonies without desmosomes. If the Ca++ is raised to 1 mM, desmosomes are assembled and the distribution of keratin filaments is altered. We have examined the disposition of vinculin and actin in keratinocytes under similar conditions. Using immunofluorescence microscopy we show that raising [Ca++] in the medium dramatically alters the distribution of vinculin and actin and results in the formation of adherens-type junctions within 15 min after switching to high calcium medium. Borders of cells at the edge of colonies, which are not proximal to other cells, are not affected, while cells in the interior of the colony form junctions around their periphery. Attachment plaques in keratinocytes grown in low calcium medium are located at the ventral plane of the cell, but junctions formed after switching to high calcium are not, as demonstrated by interference reflection microscopy. In cells colabeled with antibodies against vinculin and desmoplakin, vinculin-containing adherens junctions were visible before desmosomal junctions when cells were switched to high calcium. Although newly formed vinculin-containing structures in high calcium cells, like desmosomes, colocalize with phase-dense structures, superimposition of video fluorescence images using digitized fluorescence microscopy indicates that adherens junctions and desmosomes are discrete structures. Adherens junctions, like desmosomes, may play an essential role in controlling stratification of keratinocytes.  相似文献   

11.
Two hemidesmosomal plaque components of 230 and 180 kD have recently been characterized using autoantibodies in the serum samples of bullous pemphigoid (BP) patients (Klatte, D. H., M. A. Kurpakus, K. A. Grelling, and J. C. R. Jones. 1989, J. Cell Biol. 109:3377-3390). These BP autoantibodies generate the type of staining patterns that one would predict for formed hemidesmosomes, i.e., a punctate staining pattern towards the substratum; in less than 50% of various primary epithelial and transformed epidermal cell lines even when such cells are maintained in culture for prolonged periods. In contrast, affinity- purified human autoantibodies against the 230-kD hemidesmosomal plaque component generate intense immunofluorescence staining along the region of cell-substratum interaction in the rat bladder tumor cell line 804G maintained on uncoated glass cover-slips. This pattern is distinct from that observed in the 804G cells using an antibody preparation directed against vinculin, a component of adhesion plaques. Ultrastructural analyses of the 804G cells reveals that hemidesmosome-like structures occur along the basal surface of cells where they abut the substratum. These structures are present in 804G cells maintained in culture in reduced levels of Ca2+ and are recognized by autoantibodies directed against the 230-kD hemidesmosomal plaque component as determined by immunogold ultrastructural localization. To study hemidesmosome appearance in this cell line, 804G cells were trypsinized and then allowed to readhere to glass coverslips. In rounded, unattached 804G cells, hemidesmosome-like plaque structures occur along the cell surface. These structures are recognized by the 230-kD autoantibodies. At 1 h after plating, hemidesmosomes are observed along the substratum attached surface of cells. Protein synthesis is not required for the appearance of these hemidesmosomes. Within 4 h of plating, autoantibody staining and hemidesmosomes appear towards the cell periphery. Subsequently, the polypeptide recognized by the BP autoantibodies becomes concentrated in the perinuclear region, where there are numerous hemidesmosomes. We propose that the hemidesmosomes in 804G cells are involved in cell-substratum adhesion. We discuss possible mechanisms of assembly of hemidesmosomes in the 804G cells. Indeed, the 804G cells should prove an invaluable cell line for the biochemical and molecular dissection of hemidesmosome structure, function, and assembly.  相似文献   

12.
Summary The tracheal epithelium of the mouse is a single layer of columnar cells resting on a basement membrane. Many of the cell types resemble those of other species. However, goblet cells are rare and ciliated cells occur only in scattered patches. Submucosal glands are absent from all but the highest reaches of the airway.The major proportion of the epithelial cells are non-ciliated. These usually project into the lumen of the trachea. Large amounts of smooth endoplasmic reticulum and many secretory vesicles occur within the cytoplasm. Secretory activity of these cells may be either apocrine or merocrine and these cells may transform into other cell types.It is suggested that these non-ciliated cells are Clara cells and that the mouse tracheal epithelium may make a useful model for the study of this type of cell.  相似文献   

13.
14.
15.
Hemidesmosomes (HDs) are stable anchoring structures that mediate the link between the intermediate filament cytoskeleton and the cell substratum. We investigated the contribution of various segments of the β4 integrin cytoplasmic domain in the formation of HDs in transient transfection studies using immortalized keratinocytes derived from an epidermolysis bullosa patient deficient in β4 expression. We found that the expression of wild-type β4 restored the ability of the β4-deficient cells to form HDs and that distinct domains in the NH2- and COOH-terminal regions of the β4 cytoplasmic domain are required for the localization of HD1/plectin and the bullous pemphigoid antigens 180 (BP180) and 230 (BP230) in these HDs. The tyrosine activation motif located in the connecting segment (CS) of the β4 cytoplasmic domain was dispensable for HD formation, although it may be involved in the efficient localization of BP180. Using the yeast two-hybrid system, we could demonstrate a direct interaction between β4 and BP180 which involves sequences within the COOH-terminal part of the CS and the third fibronectin type III (FNIII) repeat. Immunoprecipitation studies using COS-7 cells transfected with cDNAs for α6 and β4 and a mutant BP180 which lacks the collagenous extracellular domain confirmed the interaction of β4 with BP180. Nevertheless, β4 mutants which contained the BP180-binding region, but lacked sequences required for the localization of HD1/plectin, failed to localize BP180 in HDs. Additional yeast two- hybrid assays indicated that the 85 COOH-terminal residues of β4 can interact with the first NH2-terminal pair of FNIII repeats and the CS, suggesting that the cytoplasmic domain of β4 is folded back upon itself. Unfolding of the cytoplasmic domain may be part of a mechanism by which the interaction of β4 with other hemidesmosomal components, e.g., BP180, is regulated.  相似文献   

16.
The liver cell adhesion molecule (L-CAM) and N-cadherin or adherens junction-specific CAM (A-CAM) are structurally related cell surface glycoproteins that mediate calcium-dependent adhesion in different tissues. We have isolated and characterized a full-length cDNA clone for chicken N-cadherin and used this clone to transfect S180 mouse sarcoma cells that do not normally express N-cadherin. The transfected cells (S180cadN cells) expressed N-cadherin on their surfaces and resembled S180 cells transfected with L-CAM (S180L cells) in that at confluence they formed an epithelioid sheet and displayed a large increase in the number of adherens and gap junctions. In addition, N-cadherin in S180cadN cells, like L-CAM in S180L cells, accumulated at cellular boundaries where it was colocalized with cortical actin. In S180L cells and S180cadN cells, L-CAM and N-cadherin were seen at sites of adherens junctions but were not restricted to these areas. Adhesion mediated by either CAM was inhibited by treatment with cytochalasin D that disrupted the actin network of the transfected cells. Despite their known structural similarities, there was no evidence of interaction between L-CAM and N-cadherin. Doubly transfected cells (S180L/cadN) also formed epithelioid sheets. In these cells, both N-cadherin and L-CAM colocalized at areas of cell contact and the presence of antibodies to both CAMs was required to disrupt the sheets of cells. Studies using divalent antibodies to localize each CAM at the cell surface or to perturb their distributions indicated that in the same cell there were no interactions between L-CAM and N-cadherin molecules. These data suggest that the Ca(++)-dependent CAMs are likely to play a critical role in the maintenance of epithelial structures and support a model for the segregation of CAM mediated binding. They also provide further support for the so-called precedence hypothesis that proposes that expression and homophilic binding of CAMs are necessary for formation of junctional structures in epithelia.  相似文献   

17.
Summary The secretory coil of the ovine apocrine gland is composed predominantly of two cell types, secretory cells lining the lumen and myoepithelial cells adjacent to the basement membrane. The glands synthesize a number of hormones and growth factors, but analysis of the functions of these molecules may be hampered by the mixing of apocrine and sebaceous secretions in the pilary canal. The purpose of this study was to isolate the glands and devise simple culture procedures to facilitate investigations of secretory cell function. The most successful approach involved microdissection of the secretory coils individually from skin biopsies and culture in Dulbecco’s modified Eagle’s medium. After 1–2 wk in medium, cell outgrowths were seen from explants. These consisted predominantly of populations of epithelial cells, many containing granules. Smaller granules were usually concentrated around the cell nuclei and accumulated lipophilic dyes. Large granules were unreactive. Western analysis showed that cells in culture synthesized nerve growth factor-like peptides, a feature consistent with one of the functions of the gland in vivo. When isolated secretory coils were explanted to culture dishes coated with matrigel, highly compact, multilayered masses of cells grew out. Subsequently, tubular structures formed. The observations suggest that some differentiated functions of gland cells were retained in vitro and that the procedures described provide a system for the study of apocrine secretions in isolation from those of other skin glands.  相似文献   

18.
Using antisera to specific proteins, the localization of the rat mammary parenchymal cells (both epithelial and myoepithelial), the basement membrane, and connective tissue components has been studied during the four physiological stages of the adult rat mammary gland, viz. resting, pregnant, lactating, and involuting glands. Antisera to myosin and prekeratin were used to localize myoepithelial cells, antisera to rat milk fat globule membrane for epithelial cells, antisera to laminin and type IV collagen to delineate the basement membrane and antisera to type I collagen and fibronectin as markers for connective tissue. In the resting, virgin mammary gland, myoepithelial cells appear to form a continuous layer around the epithelial cells and are in turn surrounded by a continuous basement membrane. Antiserum to fibronectin does not delineate the basement membrane in the resting gland. The ductal system is surrounded by connective tissue. Only the basal or myoepithelial cells in the terminal end buds of neonatal animals demonstrate cytoplasmic staining for basement membrane proteins, indicating active synthesis of these proteins during this period. In the secretory alveoli of the lactating rat, the myoepithelial cells no longer appear to form a continuous layer beneath the epithelial cells and in many areas the epithelial cells appear to be in contact with the basement membrane. The basement membrane in the lactating gland is still continuous around the ducts and alveoli. In the lactating gland, fibronectin appears to be located in the basement membrane region in addition to being a component of the stroma. During involution, the alveoli collapse, and appear to be in a state of dissolution. The basement membrane is thicker and is occasionally incomplete, as also are the basket-like myoepithelial structures. Basement membrane components can also be demonstrated throughout the collapsed alveoli.  相似文献   

19.
In epidermal cells, the keratin cytoskeleton interacts with the elements in the basement membrane via a multimolecular junction called the hemidesmosome. A major component of the hemidesmosome plaque is the 230-kDa bullous pemphigoid autoantigen (BP230/BPAG1), which connects directly to the keratin-containing intermediate filaments of the cytoskeleton via its C terminus. A second bullous pemphigoid antigen of 180 kDa (BP180/BPAG2) is a type II transmembrane component of the hemidesmosome. Using yeast two-hybrid technology and recombinant proteins, we show that an N-terminal fragment of BP230 can bind directly to an N-terminal fragment of BP180. We have also explored the consequences of expression of the BP230 N terminus in 804G cells that assemble hemidesmosomes in vitro. Unexpectedly, this fragment disrupts the distribution of BP180 in transfected cells but has no apparent impact on the organization of endogenous BP230 and alpha6beta4 integrin. We propose that the BP230 N terminus competes with endogenous BP230 protein for BP180 binding and inhibits incorporation of BP180 into the cell surface at the site of the hemidesmosome. These data provide new insight into those interactions of the molecules of the hemidesmosome that are necessary for its function in integrating epithelial and connective tissue types.  相似文献   

20.
The salivary epithelium initiates as a solid mass of epithelial cells that are organized into a primary bud that undergoes morphogenesis and differentiation to yield bilayered acini consisting of interior secretory acinar cells that are surrounded by contractile myoepithelial cells in mature salivary glands. How the primary bud transitions into acini has not been previously documented. We document here that the outer epithelial cells subsequently undergo a vertical compression as they express smooth muscle α-actin and differentiate into myoepithelial cells. The outermost layer of polarized epithelial cells assemble and organize the basal deposition of basement membrane, which requires basal positioning of the polarity protein, Par-1b. Whether Par-1b is required for the vertical compression and differentiation of the myoepithelial cells is unknown. Following manipulation of Par-1b in salivary gland organ explants, Par-1b-inhibited explants showed both a reduced vertical compression of differentiating myoepithelial cells and reduced levels of smooth muscle α-actin. Rac1 knockdown and inhibition of Rac GTPase function also inhibited branching morphogenesis. Since Rac regulates cellular morphology, we investigated a contribution for Rac in myoepithelial cell differentiation. Inhibition of Rac GTPase activity showed a similar reduction in vertical compression and smooth muscle α-actin levels while decreasing the levels of Par-1b protein and altering its basal localization in the outer cells. Inhibition of ROCK, which is required for basal positioning of Par-1b, resulted in mislocalization of Par-1b and loss of vertical cellular compression, but did not significantly alter levels of smooth muscle α-actin in these cells. Overexpression of Par-1b in the presence of Rac inhibition restored basement membrane protein levels and localization. Our results indicate that the basal localization of Par-1b in the outer epithelial cells is required for myoepithelial cell compression, and Par-1b is required for myoepithelial differentiation, regardless of its localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号