首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In SO2-fumigated spinach leaves under light, chloroplast SHenzymes, glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPD)(EC 1.2.1.13 [EC] ), ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19 [EC] )and fructose-1,6-bisphosphatase (FBPase) (EC 3.1.3.11 [EC] ) weremore remarkably inactivated than other chloroplast enzymes.Their activities recovered after removal of SO2. The inactivationparalleled light-dependent CO2-fixation in spinach leaves. Inilluminated chloroplasts isolated from SO2-fumigated spinachleaves, NADP-GAPD and Ru5PK were more specifically in activatedthan other chloroplast enzymes. These two enzymes could be protectedfrom the inactivation by adding catalase. The NADP-GAPD inactivationwas suppressed by DCMU, cytochrome c or anaerobic conditions.By adding thiol compounds, the NADP-GAPD inactivation was dischargedand the activity increased. In chloroplasts or crude extractsfrom non-fumigated spinach leaves, NADP-GAPD and Ru5PK weremore strongly inhibited by externally added H2O2 than otherchloroplast enzymes. All results supported the idea that thesuppression of photosynthesis at the beginning of SO2 fumigationwas caused by the reversible inhibition of chloroplast SH enzymewith H2O2. (Received October 7, 1981; Accepted June 16, 1982)  相似文献   

2.
Peanut and tomato plants were resistant to 2.0 ppm SO2, whileradish, perilla and spinach plants were sensitive. The amountsof SO2 absorbed by peanut and tomato were obviously less thanthose absorbed by radish, perilla and spinach. Transpirationrates of peanut and tomato began to decrease within 5 min afterthe commencement of SO2 fumigation and reached minimum levels,i.e., 10 and 50% of the initial levels, respectively, after20 min exposure. The rate of perilla did not change for 70 minalter initiation of fumigation, then declined. Those of radishand spinach did not change for about 20 and 30 min, then decreasedgradually. The content of abscisic acid (ABA) was highest inpeanut. The content in tomato was also high, but low in radish,perilla and spinach. Radish supplied with exogenous ABA beganto decrease its transpiration rate immediately after SO2 fumigationand was markedly resistant to SO2. ABA in leaves may controlthe rapid stomatal closure following SO2 fumigation. (Received June 3, 1977; )  相似文献   

3.
The role of superoxide dismutase (SOD) in defense against SO2toxicity was investigated using leaves of poplar and spinach.Young poplar leaves having five times the SOD of the old leaveswere more resistant to the toxicity of SO2. Spraying spinachleaves with diethyldithiocarbamate caused a marked loss of SODactivity which resulted in a decrease in their resistance tothe toxic effects of SO2. The SOD activity in poplar leaveswas increased by fumigation with 0.1 ppm SO2, and this was moreevident in young leaves than in old ones. The increased SODactivity was inhibited by cyanide. The poplar leaves havinghigh SOD activity induced with SO2 fumigation were more resistantto 2.0 ppm SO2 than the control leaves. These findings suggestthat SO2 toxicity is in part due to the superoxide radical andthat SOD participates in the defense mechanism against SO2 toxicity. (Received February 12, 1980; )  相似文献   

4.
The effect of SO2 fumigation (2 ppm, v/v) on photosynthesisin spinach leaves in vivo was investigated by measuring Chla fluorescence (OIDP transient) and the electron paramagneticresonance (EPR) signal I. SO2 fumigation raised the I levelto yield the ID dip and suppressed the DP transient before anyvisible damage occurred in the leaf. In SO2-fumigated leaves,the time course of EPR signal I indicates that reduction ofP700 by white light illumination was inhibited but dark reductionof P700 was not significantly affected. Photosynthetic O2 evolutionwas also inhibited by SO2 fumigation. All of these effects werereversible after removal of SO2. The variable part of the fluorescencein the presence of DCMU was only slightly affected and decreasedas the fumigation time increased. We concluded that SO2 fumigationreversibly inhibits the photosynthetic water-splitting enzymesystem and it injures the reaction center of PS II in vivo whenthe fumigation time is prolonged. We discussed the role of possible toxicants derived from SO2within the leaf on the basis of the SO2 action on Chl a fluorescence. (Received December 8, 1983; Accepted May 7, 1984)  相似文献   

5.
The phytotoxic effects of sulfur dioxide (SO2) were investigatedby fumigating spinach plants with SO2. Inhibition of 2,6-dichloroindophenol(DCIP) photoreduction was observed in spinach chloroplasts isolatedfrom fumigated leaves. NADP and DCIP photoreductions were inhibitedto a similar extent by fumigation with 2.0 ppm SO2 but electronflow from reduced DCIP to NADP was not affected. When electronflow from H2O to NADP was inhibited by 36%, a 39% inhibitionof non-cyclic photophosphorylation was observed. However, phenazinemethosulfate(PMS)-catalyzed cyclic photophosphorylation wasas active as in the control chloroplasts. Moreover, in the presenceof PMS, no significant suppression was observed in the extentof light-induced H+ uptake or in the rate of H+ efflux in chloroplasts.From these results, it can be concluded that SO2 inhibits theelectron flow driven by photosystem II when plants have beenfumigated with SO2. In spinach leaves fumigated with SO2, the rate of photosyntheticO2 evolution was reduced under light-limited conditions, whilethe rate of respiratory O2 uptake changed slightly. (Received February 8, 1979; )  相似文献   

6.
Illuminated chloroplasts isolated from SO2-fumigated spinachleaves accumulated more H2O2 than those from non-fumigated ones.This H2O2 formation was dependent on light and was inhibitedby DCMU. It also was depressed by cytochrome c and superoxidedismutase (EC 1.15.1.1 [EC] ). The addition of sulfite to rupturedchloroplasts isolated from non-fumigated leaves caused an H2O2accumulation that accompanied O2 uptake. Spinach leaves losttheir catalase (EC 1.11.1.6 [EC] ), ascorbate peroxidase and glutathionereductase (EC 1.6.4.2 [EC] ) activities at the beginning of SO2 fumigation,when H2O2 was accumulated. These results suggest that the accumulationof H2O2 in SO2-fumigated spinach leaves is caused by the increasein O2production, the precursor for H2O2, with a sulfite-mediatedchain reaction at the reducing site of photosystem I, and byinactivation of the H2O2 scavenging system. (Received October 7, 1981; Accepted June 16, 1982)  相似文献   

7.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

8.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

9.
Conditions required for the reductive activation of purified, spinach chloroplast fructose-1,6-bisphosphatase (EC 3.1.3.11) have been determined in vitro. Full reductive activation was observed only when fructose-1,6-bisphosphate and Mg2+ were present at the same time as the reducing agent (dithiothreitol). Reduction in the absence either of fructose-1,6-bisphosphate or of Mg2+ slowly and irreversibly inactivated the enzyme. The concentration of fructose-1,6-bisphosphate that must be present during reduction for maximum activation depends upon the divalent cation present: it is highest with Mg2+, lower with Ca2+, and lowest when both Mg2+ and Ca2+ are present. A scheme for the reductive activation and inactivation of the enzyme is presented.  相似文献   

10.
Etiolated spinach (Spinacia oleracea L. var Winter Giant) seedlings show a residual photosynthetic fructose-1,6-bisphosphatase activity, which sharply rises under illumination. This increase in activity is due to a light-induced de novo synthesis, as it has been demonstrated by enzyme labeling experiments with 2H2O and [35S]methionine. The rise of bisphosphatase activity under illumination is strongly inhibited by cycloheximide, but not by the 70S ribosome inhibitor lincocin, which shows the nuclear origin of this chloroplastic enzyme.  相似文献   

11.
In chloroplasts isolated from SO2-fumigated leaves at 2.0 ppm,electron flow from water to 2,6-dichloroindophenol (DCIP) wasinhibited, but the electron flow from reduced DCIP to methylviologen was not affected. Neither diphenylcarbazide nor MnCl2could restore the activity of the DCIP-Hill reaction of SO2-injuredchloroplasts. Electron flows, from water to ferricyanide orto silicomolybdic acid, were inhibited in a degree similar tothat of the DCIP-Hill reaction. The rate of carotenoid photobleaching in the presence of carbonylcyanide-m-chlorophenylhydrazone was suppressed and paralleledthe inhibition of the DCIP-Hill reaction. In SO2-injured chloroplasts, the variable part of the fluorescencetransient was diminished, and the fluorescence yield loweredby SO2 was increased with 3-(3', 4'-dichlorophenyl)-l, l-dimethylurea(DCMU) or more pronouncedly by incubating the sample with sodiumdithionite. However, the yield could not recover to the levelfound in non-fumigated chloroplasts. With SO2 fumigation, thetime required to reach steady-state level of fluorescence becamelonger in the absence of DCMU, but was not altered in the presenceof DCMU. The pool size of the primary electron acceptors decreasedwith SO2 fumigation. We concluded that SO2 inactivated the primaryelectron donor or the reaction center itself. The mode of SO2action in the electron transport chain is discussed. (Received October 20, 1979; )  相似文献   

12.
The effect of SO2 fumigation on free and bound putrescine andspermidine has been investigated in pea plants grown in nitrate-basedand ammonium-containing nutrient solutions. Both amines increasesignificantly more in response to SO2 fumigation when 50% ofthe nitrate nitrogen is substituted by ammonium. Amine levelsare also increased in the unfumigated, ammonium-supplied plantsrelative to the exclusively nitrate-supplied ones. Since bothSO2 pollution and ammonium nutrition increase the H+ ion concentrationof the cells and cause a shift in the cation/anion ratio, itis concluded that with both treatments amines are synthesizedto bind these H+ ions and to compensate the relative cationdeficit. The importance of this mode of metabolic bufferingis discussed and its effectiveness calculated.  相似文献   

13.
Leaf cytosolic fructose-1,6-bisphosphatase (FBPase), partially purified from both spinach (Spinacia oleracea, var Hipack) and peas (Pisum sativum, var Progress No. 9), is reversibly inactivated by exposure to low temperature. Thus, even though assays were conducted at 22°C, samples incubated at 0 to 12°C had greatly reduced activity relative to controls maintained at 22°C. Following incubation at 22°C prior to assay, the inactivated samples regained their initial activity. Chloroplast FBPase, by contrast, was unaffected by low temperature treatment. This feature as well as lack of a response of cytosolic FBPase to thioredoxins f or cf and to chloroplast FBPase antibody indicate that the FBPase isozymes of leaves are different proteins.  相似文献   

14.
The kinetic parameters of the photosynthetic fructose-1,6-bisphosphatase isolated from Peltigera rufescens (Weis) Mudd. were measured on a seasonal basis and during a laboratory-induced temperature acclimation. Both the substrate affinity and Ea changed on a seasonal basis. During the summer, the Ea decreased from 91.8 to 62.3 kilojoules per mole. The Km fructose-1,6-bisphosphate measured at temperatures above 25°C was also found to decrease by 50%. This seasonal change in Km can be induced by growing the lichen under appropriate conditions for 2 weeks, and is correlated to a change in the net photosynthetic rates. It is hypothesized that this change in fructose-1,6-bisphosphatase is related to the seasonal temperature acclimation process that has been previously reported in this species.  相似文献   

15.
16.
The activity of highly purified pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) from barley (Hordeum vulgare) leaves was studied under conditions where the catalyzed reaction was allowed to approach equilibrium. The activity of PFP was monitored by determining the changes in the levels of fructose-6-phosphate, orthophosphate, and fructose-1,6-bisphosphate (Fru-1,6-bisP). Under these conditions PFP activity was not dependent on activation by fructose-2,6-bisphosphate (Fru-2,6-bisP). Inclusion of aldolase in the reaction mixture temporarily restored the dependence of PFP on Fru-2,6-bisP. Alternatively, PFP was activated by Fru-1,6-bisP in the presence of aldolase. It is concluded that Fru-1,6-bisP is an allosteric activator of barley PFP, which can substitute for Fru-2,6-bisP as an activator. A significant activation was observed at a concentration of 5 to 25 [mu]M Fru-1,6-bisP, which demonstrates that the allosteric site of barley PFP has a very high affinity for Fru-1,6-bisP. The high affinity for Fru-1,6-bisP at the allosteric site suggests that the observed activation of PFP by Fru-1,6-bisP constitutes a previously unrecognized in vivo regulation mechanism.  相似文献   

17.
After dark-light transitions, there is a delay in photosynthetic CO2 fixation by isolated pea chloroplasts in the range of some minutes. In order to assess the physiological significance of light modulation of enzyme activity in the control of induction, we made estimates of the kinetic parameters of fructose-1,6-bisphosphatase immediately upon release from pea chloroplasts in the dark and after illumination for various time periods. The Michaelis constant for fructose-1,6-bisphosphate decreased and maximal velocities increased during induction. It seems likely that light activation of this enzyme is one of the factors contributing to the overcoming of the lag period in photosynthetic CO2 fixation.  相似文献   

18.
Fructose-1-phosphate-6-sulfate was prepared by direct sulfurylation of fructose, and selective phosphorylation of the 6-sulfuryl isomer by phosphofructokinase. The ketose derivative was used as a substrate for aldolase and fructose-1,6-diphosphatase. Kinetic studies with aldolase showed that the alternative substrate binds one third as well as fructose-1,6-P2 yet 900 fold greater than fructose-1-P. The Vm was intermediate between the two ketose phosphates. From kinetic studies with skeletal muscle fructose-1,6-diphosphatase at pH 7.5 a Km of 8 μM and a Vm approximately 6% that for fructose-1,6-P2 was obtained.  相似文献   

19.
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites.  相似文献   

20.
The effect of pH and of Mg2+ concentration on the light activated form of stromal fructose-1,6-bisphosphatase (FBPase) was studied using the enzyme rapidly extracted from illuminated spinach chloroplasts. The (fructose-1,6-bisphosphate4-)(Mg2+) complex has been identified as the substrate of the enzyme. Therefore, changes of pH and Mg2+ concentrations have an immediate effect on the activity of FBPase by shifting the pH and Mg2+ dependent equilibrium concentration of the substrate. In addition, changes of pH and Mg2+ concentration in the assay medium have a delayed effect on FBPase activity. A correlation of the activities observed using different pH and Mg2+ concentrations indicates, that the effect is not a consequence of the pH and Mg2+ concentration as such, but is caused by a shift in the equilibrium concentration of a hypothetical inhibitor fructose-1,6-bisphosphate3- (uncomplexed), resulting in a change of the activation state of the enzyme. The interplay between a rapid effect on the concentration of the substrate and a delayed effect on the activation state enables a rigid control of stromal FBPase by stromal Mg2+ concentrations and pH. Fructose-1,6-bisphosphatase is allosterically inhibited by fructose-6-phosphate in a sigmoidal fashion, allowing a fine control of the enzyme by its product.Abbreviations Fru1,6 bis P fructose-1,6-bisphosphate - Fru6P fructose-6-phosphate - FBPase fructose-1,6-bisphosphatase Some of these results have been included in a preliminary report (Heldt et al. 1984)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号