首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
Structure of the sucrose utilization locus in a Lactobacillus plantarum type strain was studied using PCR and Southern hybridization. Restriction map analysis revealed its high similarity to the sequenced sucrose utilization locus of Pediococcus pentosaceus pSRQ1. The L. plantarum locus proved containing oppositely oriented scrA and the scrBRagl operon, but not agaS. The L. plantarum sucrase gene (scrB) was partly sequenced. A higher (98.6%) homology was revealed between scrB than between the 16S rRNA genes of L. plantarum and P. pentosaceus, suggesting horizontal transfer of the sucrose utilization locus between the genera of lactic acid bacteria. Amino acid sequence analysis showed that the ScrB proteins of the two species belong to a subfamily of glycosyl hydrolase family GH32 which includes various beta-fructosidases.  相似文献   

7.
Bogs J  Geider K 《Journal of bacteriology》2000,182(19):5351-5358
Sucrose is an important storage and transport sugar of plants and an energy source for many phytopathogenic bacteria. To analyze regulation and biochemistry of sucrose metabolism of the fire blight pathogen Erwinia amylovora, a chromosomal fragment which enabled Escherichia coli to utilize sucrose as sole carbon source was cloned. By transposon mutagenesis, the scr regulon of E. amylovora was tagged, and its nucleotide sequence was determined. Five open reading frames, with the genes scrK, scrY, scrA, scrB, and scrR, had high homology to genes of the scr regulons from Klebsiella pneumoniae and plasmid pUR400. scrB and scrR of E. amylovora were fused to a histidine tag and to the maltose-binding protein (MalE) of E. coli, respectively. ScrB (53 kDa) catalyzed the hydrolysis of sucrose with a K(m) of 125 mM. Binding of a MalE-ScrR fusion protein to an scrYAB promoter fragment was shown by gel mobility shifts. This complex dissociated in the presence of fructose but not after addition of sucrose. Expression of the scr regulon was studied with an scrYAB promoter-green fluorescent protein gene fusion and measured by flow cytometry and spectrofluorometry. The operon was affected by catabolite repression and induced by sucrose or fructose. The level of gene induction correlated to the sucrose concentration in plant tissue, as shown by flow cytometry. Sucrose mutants created by site-directed mutagenesis did not produce significant fire blight symptoms on apple seedlings, indicating the importance of sucrose metabolism for colonization of host plants by E. amylovora.  相似文献   

8.
9.
10.
In Gram-positive bacteria, catabolite control protein A (CcpA)-mediated catabolite repression or activation regulates not only the expression of a great number of catabolic operons, but also the synthesis of enzymes of central metabolic pathways. We found that a constituent of the Bacillus subtilis respiratory chain, the small cytochrome c550 encoded by the cccA gene, was also submitted to catabolite repression. Similar to most catabolite-repressed genes and operons, the Bacillus subtilis cccA gene contains a potential catabolite response element cre, an operator site recognized by CcpA. The presumed cre overlaps the -35 region of the cccA promoter. Strains carrying a cccA'-IacZ fusion formed blue colonies when grown on rich solid medium, whereas white colonies were obtained when glucose was present. beta-Galactosidase assays with cells grown in rich medium confirmed the repressive effect of glucose on cccA'-lacZ expression. Introduction of a ccpA or hprK mutation or of a mutation affecting the presumed cccA cre relieved the repressive effect of glucose during late log phase. An additional glucose repression mechanism was activated during stationary phase, which was not relieved by the ccpA, hprK or cre mutations. An interaction of the repressor/corepressor complex (CcpA/seryl-phosphorylated HPr (P-Ser-HPr)) with the cccA cre could be demonstrated by gel shift experiments. By contrast, a DNA fragment carrying mutations in the presumed cccA cre was barely shifted by the CcpA/P-Ser-HPr complex. In footprinting experiments, the region corresponding to the presumed cccA cre was specifically protected in the presence of the CcpA/P-Ser-HPr complex.  相似文献   

11.
A single-copy reporter system for Staphylococcus xylosus has been developed, that uses a promoterless version of the endogenous β-galactosidase gene lacH as a reporter gene and that allows integration of promoters cloned in front of lacH into the lactose utilization gene cluster by homologous recombination. The system was applied to analyze carbon catabolite repression of S. xylosus promoters by the catabolite control protein CcpA. To test if lacH is a suitable reporter gene, β-galactosidase activities directed by two promoters known to be subject to CcpA regulation were measured. In these experiments, repression of the malRA maltose utilization operon promoter and autoregulation of the ccpA promoters were confirmed, proving the applicability of the system. Subsequently, putative CcpA operators, termed catabolite-responsive elements (cres), from promoter regions of several S. xylosus genes were tested for their ability to confer CcpA regulation upon a constitutive promoter, PvegII. For that purpose, cre sequences were placed at position +3 or +4 within the transcribed region of PvegII. Measurements of β-galactosidase activities in the presence or absence of glucose yielded repression ratios between two- and eightfold. Inactivation of ccpA completely abolished glucose-dependent regulation. Therefore, the tested cres functioned as operator sites for CcpA. With promoters exclusively regulated by CcpA, signal transduction leading to CcpA activation in S. xylosus was examined. Glucose-dependent regulation was measured in a set of isogenic mutants showing defects in genes encoding glucose kinase GlkA, glucose uptake protein GlcU, and HPr kinase HPrK. GlkA and GlcU deficiency diminished glucose-dependent CcpA-mediated repression, but loss of HPr kinase activity abolished regulation. These results clearly show that HPr kinase provides the essential signal to activate CcpA in S. xylosus. Glucose uptake protein GlcU and glucose kinase GlkA participate in activation, but they are not able to trigger CcpA-mediated regulation independently from HPr kinase.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The carbon catabolite control protein A (CcpA) senses the physiological state of the cell by binding several effectors and responds with differential regulation of many genes in Bacilli. HPr-Ser46-P or Crh-Ser46-P interact with CcpA and stimulate binding to catabolite responsive elements. In addition, the glycolytic intermediates fructose 1,6-bisphosphate (FBP) and glucose 6-phosphate (Glc-6-P) stimulate HPr-Ser46-P but not Crh-Ser46-P binding to CcpA. The mechanisms by which coeffector binding to CcpA is linked to differential gene expression are unclear. To address this question we mutated residues participating in the interaction between HPr-Ser46-P or Crh-Ser46-P and CcpA and analyzed their effects on CcpA binding and stimulation of cre binding by surface plasmon resonance. The HPrH15A and CcpAD297A mutations do not affect complex formation but abolish FBP and Glc-6-P stimulation. Likewise, the CrhQ15H mutant becomes sensitive to these glycolytic intermediates. Hence, the contact of HPrHis-15 to Asp-297 in CcpA is a determinant for HPr specific FBP and Glc-6-P stimulation. The HPrR17A and -K mutants are both strongly impaired in stimulation of CcpA binding to cre, but only HPrR17A is defect in binding to CcpA indicating that these residues affect allostery of CcpA. Mutations of the residues of CcpA, which contact Arg-17 of HPr, exhibit differential effects on regulation of catabolic genes. Taken together, His-15 of HPr processes sensing information, while Arg-17 is involved in determining the genetic output.  相似文献   

19.
The phosphoproteins HPrSerP and CrhP are the main effectors for CcpA-mediated carbon catabolite regulation (CCR) in Bacillus subtilis. Complexes of CcpA with HPrSerP or CrhP regulate genes by binding to the catabolite responsive elements (cre). We present a quantitative analysis of HPrSerP and CrhP interaction with CcpA by surface plasmon resonance (SPR) revealing small and similar equilibrium constants of 4.8 +/- 0.4 microm for HPrSerP-CcpA and 19.1 +/- 2.5 microm for CrhP-CcpA complex dissociation. Forty millimolar fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc6-P) increases the affinity of HPrSerP to CcpA at least twofold, but have no effect on CrhP-CcpA binding. Saturation of binding of CcpA to cre as studied by fluorescence and SPR is dependent on 50 microm of HPrSerP or > 200 microm CrhP. The rate constants of HPrSerP-CcpA-cre complex formation are k(a) = 3 +/- 1 x 10(6) m(-1).s(-1) and k(d) = 2.0 +/- 0.4 x 10(-3).s(-1), resulting in a K(D) of 0.6 +/- 0.3 nm. FBP and Glc6-P stimulate CcpA-HPrSerP but not CcpA-CrhP binding to cre. Maximal HPrSerP-CcpA-cre complex formation in the presence of 10 mm FBP requires about 10-fold less HPrSerP. These data suggest a specific role for FBP and Glc6-P in enhancing only HPrSerP-mediated CCR.  相似文献   

20.
Glycolysis is one of the main pathways of carbon catabolism in Bacillus subtilis. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase, the key enzyme of glycolysis from an energetic point of view, is induced by glucose and other sugars. Two regulators are involved in induction of the gapA operon, the product of the first gene of the operon, the CggR repressor, and catabolite control protein A (CcpA). CcpA is required for induction of the gapA operon by glucose. Genetic evidence has demonstrated that CcpA does not control the expression of the gapA operon by binding directly to a target in the promoter region. Here, we demonstrate by physiological analysis of the inducer spectrum that CcpA is required only for induction by sugars transported by the phosphotransferase system (PTS). A functional CcpA is needed for efficient transport of these sugars. This interference of CcpA with PTS sugar transport results from an altered phosphorylation pattern of HPr, a phosphotransferase of the PTS. In a ccpA mutant strain, HPr is nearly completely phosphorylated on a regulatory site, Ser-46, and is trapped in this state, resulting in its inactivity in PTS phosphotransfer. A mutation in HPr affecting the regulatory phosphorylation site suppresses both the defect in PTS sugar transport and the induction of the gapA operon. We conclude that a low-molecular effector derived from glucose that acts as an inducer for the repressor CggR is limiting in the ccpA mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号