首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Summary A method is described for culturing human mammary epithelial cells in primary culture and allowing more than 50 generations and a 1000-fold increase from starting inocula without need of enzymatic transfers. Organoids dissociated from breast tissue are plated in medium containing 1.05 mM Ca++ to effect attachment and growth to monolayer density. Medium is then switched to one containing 0.06 mM Ca++ to overcome “renewal inhibition” and to stimulate growth. In low Ca++ media, primary cultures become a long-term, continuous source of free-floating viable cells free of fibroblasts. A fundamental requirement for extended growth in primary culture is maintaining calcium levels at approximately 0.06 mM. Above 0.06 mM Ca++, cells divide only 3 to 4 times in primary cultures before terminal differentiation occurs. At 0.06 mM Ca++, cells continue to divide for periods of time determined partly by feeding schedule, but up to 6 mo. and 50 generations of (linear) growth. Cells released from monolayer were greater than 90% viable and yielded 105 cells/cm2 of attached cells every 72 h. Free-floating single cells readily replated and cloned, when transferred, without need of trypsin for dissociation. Long-term free-floating cells were typical mammary epithelium: (a) they formed domes and exhibited renewal inhibition, (b) they produced ductlike formations in collagen gels, (c) they contained epithelium-specific keratin filaments, and (d) they were diploid.  相似文献   

2.
During embryogenesis, Schwann cells interact with axons and other Schwann cells, as they migrate, ensheath axons, and participate in organizing peripheral nervous tissues. The experiments reported here indicate that the calcium-dependent molecule, N-cadherin, mediates adhesion of Schwann cells to neurites and to other Schwann cells. Cell cultures from chick dorsal root ganglia and sciatic nerves were maintained in media containing either 2mM Ca++ or 0.2 mM Ca++, a concentration that inactivates calcium-dependent cadherins. When the leading lamellae of Schwann cells encountered migrating growth cones in medium with 2 mM Ca++, they usually remained extended, and the growth cones often advanced onto the Schwann cell upper surface. In the low Ca++ medium, the frequency of withdrawal of the Schwann cell lamella after contact with a growth cone was much greater, and withdrawal was the most common reaction to growth cone contact in medium with 2 mM Ca++ and anti-N-cadherin. Similarly, when motile leading margins of two Schwann cells touched in normal Ca++ medium, they often formed stable areas of contact. N-cadherin and vinculin were co-concentrated at these contact sites between Schwann cells. However, in low Ca++ medium or in the presence of anti-N-cadherin, interacting Schwann cells usually pulled away from each other in a behavior reminiscent of contact inhibition between fibroblasts. In cultures of dissociated cells in normal media, Schwann cells frequently were aligned along neurites, and ultrastructural examination showed extensive close apposition between plasma membranes of neurites and Schwann cells. When dorsal root ganglia explants were cultured with normal Ca++, Schwann cells migrated away from the explants in close association with extending neurites. All these interactions were disrupted in media with 0.2 mM Ca++. Alignment of Schwann cells along neurites was infrequent, as were extended close apposition between axonal and Schwann cell plasma membranes. Finally, migration of Schwann cells from ganglionic explants was reduced by disruption of adhesive contact with neurites. The addition of antibodies against N-cadherin to medium with normal Ca++ levels had similar effects as lowering the Ca++ concentration, but antibodies against the neuronal adhesive molecule, L1, had no effects on interactions between Schwann cells and neurites.  相似文献   

3.
Summary Homeostasis of intracellular calcium ([Ca++]i) and pH (pHi) is important in the cell's ability to respond to growth factors, to initiate differentiation and proliferation, and to maintain normal metabolic pathways. Because of the importance of these ions to cellular functions, we investigated the effects of changes of [Ca++]i and pHi on each other in primary cultures of rabbit corneal epithelial cells. Digitized fluorescence imaging was used to measure [Ca++]i with fura-2 and pHi with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Resting pHi in these cells was 7.37±0.05 (n=20 cells) and resting [Ca++]i was 129±10 nM (n=35 cells) using a nominally bicarbonate-free Krebs Ringer HEPES buffer (KRHB), pH 7.4. On exposure to 20 mM NH4Cl, which rapidly alkalinized cells by 0.45 pH units, an increase in [Ca++]i to 215±14 nM occurred. Pretreatment of the cells with 100 μM verapamil or exposure to 1 mM ethylene bis-(oxyethylenenitrilo)-tetraacetic acid (EGTA) without extracellular calcium before addition of 20 mM NH4Cl did not abolish the calcium increase, suggesting that the source of the calcium transient was from intracellular calcium stores. On removal of NH4Cl or addition of 20 mM sodium lactate, there were minimal changes in calcium even though pHi decreased. Treatment of CE cells with the calcium ionophores, ionomycin and 4-bromo A23187, increased [Ca++]i, but produced a biphasic change in pHi. Initially, there was an acidification of the cytosol, and then an alkalinization of 0.10 to 0.11 pH units above initial values. When [Ca++]i was decreased by treating the cells with 5 mM EGTA and 20 μM ionomycin, pHi decreased by 0.35±0.02 units. We conclude that an increase in pHi leads to an increase in [Ca++]i in rabbit corneal epithelial cells; however, a decrease in pHi leads to minor changes in [Ca++]i. The ability of CE cells to maintain proper calcium homeostasis when pHi is decreased may represent an adaptive mechanism to maintain physiological calcium levels during periods of acidification, which occur during prolonged eye closure.  相似文献   

4.
Summary Rabbit aortic smooth muscle cells were prepared by enzymatic digestion of the aortic smooth muscle layer. The cells were subcultured up to Passage 22 starting from a cryogenically preserved stock (approximately 1010cells, Passage 8) and characterized morphologically and for45Ca++ uptake. Microscopically the cells demonstrated the characteristics of vascular smooth muscle cells.45Ca++ uptake by the cells plated on tissue culture flasks (25 cm2) was determined at 25°C in physiological salt solution (PSS) containing45Ca++ in low (5 mM) or high (50mM) KCl concentrations. At the end of the incubation period (0 to 30 min), PSS was aspirated and the cells quickly washed, digested with 0.5N NaOH, and counted for45Ca++. High K+ increased the45Ca++ uptake by 100% or more compared to the low K+ uptake of45Ca++. This K+-induced45Ca++ uptake was eliminated in osmotically shocked cells, and inhibited by nifedipine, verapamil, and diltiazem, in a dose-dependent manner. The extent of45Ca++ uptake and the inhibitory activity of nifedipine were retained up to Passage 22. It is concluded that the developed methodology for scaled-up cultures of rabbit aortic smooth muscle cells provides morphologically intact and biochemically functioning cells suitable for calcium channel studies.  相似文献   

5.
Summary The histo- and cytochemical localization of Ca++-ATPase activity in the adenohypophysis of the guinea pig was studied utilizing a newly developed method (Ando et al. 1981). An intense reaction was observed in the wall of the blood vessels and between non-secretory cells (stellate cells) and endocrine cells of the pars distalis. Under the electron microscope the Ca++-ATPase reaction product was located extracellularly in relation to the plasmalemma of the stellate cells. This reaction was dependent on Ca++ and the substrate, ATP, and reduced by the addition of 0,1 mM quercetin to the standard incubation medium. Preheating of the sections before incubation completely inhibited the enzyme activity. When Mg++ in different concentrations were substituted for Ca++ in the incubation medium the reaction was always reduced. Both Ca++ and Mg++ in the incubation medium also reduced the reaction. The plasmalemma of the endocrine cells contains no demonstrable amount of Ca++-ATPase activity. The function of the Ca++-ATPase activity is discussed in relation to the regulation of the extracellular Ca++ concentration which seems to be important with respect not only to the secretory process of the endocrine cells but also to the metabolism of the adenohypophysis.  相似文献   

6.
Summary In experimental animal models the susceptibility of the mammary gland to neoplastic transformation is related to its degree of development and proliferative activity; this observation led us to determine whether the human breast epithelium also exhibits development-related differences, and whether these differences could be detected in an in vitro system. Normal breast tissue obtained from reduction mammoplasties of 9 patients ranging in age from 18 to 56 years were characterized in both whole mount preparations and organoids obtained after collagenase-hyaluronidase digestion by their degree of development based upon the types of lobules present. Lobules were classified into type 1 (Lob 1), composed of approximately 11 alveolar buds, the less developed; lobules type 2 (Lob 2), of moderate development, composed of approximately 47 ductules each, and lobules type 3 (Lob 3), composed of 80 ductules each, represented the highest level of development. Epithelial organoids obtained after digestion were plated in DMEM:F12 medium supplemented with hydrocortisone, cholera toxin, insulin and 5% horse serum with a calcium concentration of 1.05 mM Ca++. Following attachment, the medium was replaced by medium containing 0.040 mM Ca++. The percentage of attachment of organoids to the flask was greater in cells from Lob 1 (89–99%) and Lob 1+2 (79–100%) than in cells from Lob 3, which had a 53–67% attachment. The total yield of cells after 7 weeks in culture was also greater in cells derived from Lob 1 and Lob 1+2 than in cells from Lob 3. The total yield of cells obtained from primary cultures was not related to the number of organoids plated, but to the degree of development of the gland. The DNA-labeling index (DNA-LI) in intact breast tissue correlated with that in primary cultures; it was greater in Lob 1 and Lob 1+2 than in Lob 3. By flow cytometry, the highest percentage of cells in S-phase was seen in cells with the highest DNA-LI. We concluded that the growth characteristics of mammary epithelial cells in vitro in a low Ca++ medium is modulated by the degree of development and differentiation of the gland. Supported by PHS Grant CA-38921 awarded by the National Cancer Institute, DHHS, and an Institutional Grant from the United Foundation of Greater Detroit.  相似文献   

7.
Summary Primary cultures of embryonic chick pectoral skeletal muscle were used to study calcium regulation of myoblast fusion to form multinucleated myotubes. Using atomic absorption spectrometry to measure total cellular calcium and the45Ca-exchange method to determine free cellular Ca++, our data suggest that only the free cellular calcium changes significantly during development under conditions permissive for myotube formation (0.9 mM external Ca++). Increases in calcium uptake occurred before and toward the end of the period of fusion with the amount approximating 2 to 4 pmol per cell in mass cultures. If the medium [Ca++] is decreased to 0.04 mM, as determined with a calcium electrode, a fusion-block is produced and free cell Ca++ decreased 5- to 10-fold. Removal of the fusion-block by increasing medium [Ca++] results in a release of the fusion-block and an increase in cellular Ca++ to approximately 1 pmol per cell during fusion, and higher thereafter. Cation ionophore A23187 produced transient increases in cellular calcium and stimulated myoblast fusion and the final extent of myotube formation only when added at the onset of culture. Results suggest that transient increased calcium uptake alone is insufficient for fusion because critical cellular content in conjunction with permissive amounts of medium [Ca++] must exist. The latter suggests further that cell surface Ca++ was also critical.  相似文献   

8.
Summary Methods for the isolation and in vitro culture of larval and adultXenopus laevis epidermal cells have been developed. Epidermal cells of stage 52–54 tadpoles and adult epidermal cells were enzymatically dissociated and purified (98%) by Percoll-density centrifugation and unit-gravity sedimentation. Both cell types attached on fibronectin-coated dishes and proliferated for 1 wk when the proper medium was used. There were four significant differences between larval and adult cells: a) Adult cells had a greater buoyant density than larval cells. b) Keratin synthesis patterns were markedly different. c) A combination of medium F12 and Eagle's minimum essential medium was optimal for growth of larval cells whereas MCDB151 medium was optimal for adult cells. d) Adult cells needed fetal bovine serum (>5%) whereas larval cells grew without fetal bovine serum. In contrast to these differences, larval and adult cells had two similar properties: a) Insulin had a potent effect on the growth of both cells, and b) The optimal Ca++ concentration for cell growth was quite low for both cell types; 0,1 mM for larval cells and below 0.05 mM for adult cells. These results suggest that low Ca++ levels are essential for both cornifying (adult) and uncornifying (larval) amphibian keratinocytes. The culture techniques described herein for larval and adult epidermal cells provide a new in vitro model for analyzing development of the epidermis during amphibian metamorphosis. This study was supported by grant (HD 24438) from the National Institutes of Health, Bethesda, MD.  相似文献   

9.
Bdellovibrio spp. strains 6-5-S, 100, 109 (Davis), and A3.12 multiply in the presence of viable but non-proliferating or heat-killed (70 or 100 C, 10 min; 121 C, 5 min) cells ofSpirillum serpens strain VHL suspended in buffers supplemented with Ca++ and/or Mg++. Ca++ (optimal, 2 × 10−3 m) and Mg++ (optimal, 2 × 10−5 m) independently stimulate the groth of bdellovibrios: additive effects are noted. Multiplication ofBdellovibrio in the presence of Ca++ and Mg++ is associated with the release into the culture supernatant solution of UV-absorbing materials and of amino sugars (presumably by activating or stabilizing lytic enzymes). The growth rate ofBdellovibrio strain 6-5-S in suspensions of heat-killed host cells is lower than in living but non-proliferating host cells. Bdellovibrio spp. strains 100, 109 (Davis), 109 (Jerusalem), A3.12, and 6-5-S all require added Ca++ for growth in cell suspensions of homologous or heterologous host bacteria which have been grown in minimal medium.Bdellovibrio sp. strain 109 (Jerusalem) is capable of growing in the presence of the low level of Ca++ boundin situ to the cells of its host,E. coli B, when the host cells had been cultivated in a complex medium but not when the host cells had been grown in a Ca++-depleted minimal medium (except when Ca++ is added). Addition of ethylenediaminetetraacetic acid (0.01m) preventsBdellovibrio growth, which is restored by addition of Ca++ and Mg++. The nonparasitic growth ofBdellovibrio spp. strains 100, 109, A3.12, and 6-5-S in heat-killed cell suspensions only in the presence of added cations indicates that, in this system, the cations are essential for activity of bacteriolytic and other enzymes and that they might also directly affectBdellovibrio growth rather than — as may be the case in other systems of live host cells plusBdellovibrio — only indirectly by affecting attachment to the host cell, maintaining integrity of the host spheroplasts, and increasing the burst size.  相似文献   

10.
Correlation of the localization of La+++ with its effects on Ca++ exchange in cultured rat heart cells is examined with the use of a recently developed technique. 75% of cellular Ca++ is exchangeable and is completely accounted for by two kinetically defined phases. The rapidly exchangeable phase has a t ½ = 1.15 min and accounts for 1 1 mmoles Ca++/kg wet cells or 43% of the exchangeable Ca++ (cells perfused with [Ca++]o = 1 mM) Phase 2 has a t ½ = 19.2 min and accounts for 1.5 mmoles Ca++/kg wet cells or 57% of the exchangeable Ca++. 0.5 mM [La+++]o displaces 0 52 mmoles Ca++/kg wet cells—all from phase 1—and almost completely abolishes subsequent Ca++ influx and efflux The presence of La+++ in the washout converts the washout pattern to a single phase system with a t ½ = 124 min. The effects upon Ca++ exchange are coincident with abolition of contractile tension but regenerative depolarization of the tissue is maintained Electron microscope localization of the La+++ places it exclusively in the external lamina or basement membrane of the cells. The study indicates that negatively charged sites in the basement membrane play a crucial role in the E-C coupling process in heart muscle  相似文献   

11.
Summary During anuran metamorphosis dramatic changes in morphogenesis and differentiation of epidermis occur under the influence of thyroid hormones. Modification of ionic calcium concentration also markedly alters the pattern of proliferation and differentiation in amphibian epidermal cells in vitro. The present study was designed to determine the direct effect of low (0.05 mM) and high (0.5mM) calcium (Ca2+) in the absence or presence of thyroxine (10−7 M) on epidermal cells of the body and tail tissue in vitro. When tail fin and body skin explants were maintained in low (0.05 mM) calcium for 48 h, normal ultrastructural morphology and integrity of the cells was observed in both the tissue types. When tissues were exposed to high levels of calcium (0.5mM) in culture medium, tail epidermis showed stratification, and skein cells exhibited apoptosis, both in the presence or absence of thyroid hormones. Under high calcium conditions, the body epidermis showed keratinization of apical cells, apoptosis of skein cells, and increased desmosome formation. These results suggest that (1) optimal Ca2+ concentration for larval epidermal cells is quite low (0.05 mM), (2) high Ca2+ leads to keratinization only in body epidermis, and (3) apoptosis occurred in skein cells of both the tissues at high Ca2+ concentrations (0.5mM). The present study therefore suggests that the extracellular calcium concentration regulates the process of cell death and differentiation inRana catesbeiana larval epidermis, and this effect may be similar to the effect of calcium on mammalian epidermal cells.  相似文献   

12.
Thin strips of frog ventricle were isolated and bathed for 15 min in a solution containing 140 mM KCl, 5 mM Na2ATP, 3 mM EDTA, and 10 mM Tris buffer at pH 7.0. The muscle was then exposed to contracture solutions containing 140 mM KCl, 5 mM Na2ATP, 1 mM MgCl2, 10 mM Tris, 3 mM EGTA, and CaCl2 in amounts to produce concentrations of free calcium from 10-4.8 M to 10-9 M. The muscles developed some tension at approximately 10-8 M, and maximum tension was achieved in 10-5 M Ca++. They relaxed in Ca++ concentrations less than 10-8 M. The development of tension by the EDTA-treated muscles was normalized by comparison with twitch tension at a stimulation rate of 9 per min before exposure to EDTA. In 10-5 M Ca++ tension was always several times the twitch tension and was greater than the contracture tension of a frog ventricular strip in KCl low Na-Ringer. Tension equal to half-maximum was produced at approximately 10-6.2 M Ca++. Intracellular recording of membrane potential indicated that after EDTA treatment the resting potential of cells in Ringer solution with 10-5 M Ca or less was between 5 and 20 mv. Contracture solutions did not produce tension without prior treatment with EDTA. The high permeability of the membrane produced by EDTA was reversed and the normal resting and action potentials restored in 1 mM Ca-Ringer. Similar studies of EDTA-treated rabbit right ventricular papillary muscle produced a similar tension vs. Ca++ concentration relation, and the high permeability state reversed with exposure to normal Krebs solution.  相似文献   

13.
Summary Primary mycolardial cell cultures and freshly isolated cardiac cells in suspension resprensent two isolated, whole cell models for investigating cellular transsarcolemmal45Ca++ exchange in response to a receptor-coupled stimulus. Studies were performed to characterize beta-adrenergic receptor binding, beta-adrenergic receptor mediated cellular calcium (45Ca++) exchange, and viability in purified primary myocardial cell cultures and freshly isolated cardiac cells in suspension obtained from 3-to 3-d-old Sprague-Dawley rats. In addition, beta-adrenergic receptor binding was characterized in whole-heart crude membrane preparations. All three preparations had saturable beta-adrenergic binding sites with the antagonist [125I]iodopindolol ([125I]IPIN). The suspensions had a significantly lower B max (42±6 fmol/mg protein) than the membranes and cultures (77±8 and 95±10 fmol/mg protein, respectively). The K D of the cultures (218±2.0 pM) was significantly higher than that for the suspensions (107 ±1.3 pM) and membranes (93±1.3 pM). Viability was significantly lower in the suspensions (57%) when compared to 94% viability in myocardial cell cultures after 3 h of incubation in Kreb's Henseleit buffer. Incubation of the cultures with 5.0×10−7 M isoproterenol resulted in a significant increase in45Ca++ exchange as early as 15 s. In contrast,45Ca++ exchange into the suspensions was not increased. Although both primary cell cultures and cardiac cells in suspension possess saturable beta-adrenergic receptors, only the monolayer cultures exhibited functional beta-adrenergic receptor-mediated45Ca++ exchange. Of the two intact cell models investigated, these data suggest that primary myocardial cell cultures are more suitable than cell suspensions for investigating beta-adrenergic receptor binding and functions in the postnatal rat heart. This research was supported by The University of Texas Research Institute, a grant from the Texas Advanced Research Technology Program awarded to S. W. Leslie and R. E. Wilcox, and contract 223-86-2109 from the Food and Drug Administration.  相似文献   

14.
We performed experiments to elucidate the calcium influx pathways in freshly dispersed rabbit corneal epithelial cells. Three possible pathways were considered: voltage-gated Ca++ channels, Na+/Ca++ exchange, and nonvoltage-dependent Ca++-permeable channels. Whole cell inward currents carrying either Ca++ or Ba++ were not detected using voltage clamp techniques. We also used imaging technology and the Ca++-sensitive ratiometric dye fura 2 to measure changes in intracellular Ca++ concentration ([Ca]i). Bath perfusion with NaCl Ringer's solution containing the calcium channel agonist Bay-K-8644 (1 m), or Ni++ (40 m), a blocker of many voltage-dependent calcium channels, did not affect [Ca++]i. Membrane depolarization with a KCl Ringer's bath solution resulted in a decrease in [Ca++]i. These results are inconsistent with the presence of voltage gated Ca++ channels. Nonvoltage gated Ca++ entry, on the other hand, would be reduced by membrane depolarization and enhanced by membrane hyperpolarization. Agents which hyperpolarize via stimulation of K+ current, such as flufenamic acid, resulted in an increase in ratio intensity. The cells were found to be permeable to Mn++ and bath perfusion with 5 mm Ni++ decreased [Ca++]i suggesting that the Ca++ conductance was blocked. These results are most consistent with a nonvoltage gated Ca++ influx pathway. Finally, replacing extracellular Na+ with Li+ resulted in an increase in [Ca++]i if the cells were first Na+-loaded using the Na+ ionophore monensin and ouabain, a Na+-K+-ATPase inhibitor. These results suggest that Na+/Ca++ exchange may also regulate [Ca++] in this cell type.The authors are grateful to Chris Bartling for expert technical assistance with the imaging experiments, Helen Hendrickson for cell preparation, and Jonathon Monck for helpful discussions regarding imaging technology. This work was supported by National Institutes of Health grants EYO3282, EYO6005, DK08677, and an unrestricted award from Research to Prevent Blindness.  相似文献   

15.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

16.
Concentrations of extracellular Ca++ optimum for growth of cell types of mesodermal origin have been reported to be up to 100-fold higher than concentrations optimal for epidermal or other epithelial lining cells. In order to examine Ca++ requirements of epithelial v. fibroblastic cells derived from a common tissue source, prior to prolonged culture, freshly isolated mouse epidermal keratinocytes, hair follicle cells and dermal fibroblasts were plated at high density or at clonal density in medium ranging from 0.014 to 1.4 mM Ca++. Epithelial skin cells grew best at Ca++ levels below 0.1 mM while dermal fibroblasts grew best at a Ca++ concentration of 1.4 mM. the epithelial cell types exhibited marked morphologic changes in response to Ca++, while the fibroblasts did not. These results suggest that the variations in Ca++ response between lining epithelium and mesenchymal cells resulted from inherent differences in these cell types, but a mechanism for such differential effects has not yet been defined.  相似文献   

17.
Fast-2, a membrane mutant of Paramecium aurelia, is due to a single-gene mutation and has behavioral abnormalities. Intracellular recordings through changes of external solutions were made. The mutant membrane hyperpolarized when it encountered solutions with low K+ concentration. This hyperpolarization and other associated activities were best observed in Ca- or Na-solutions devoid of K+. Membrane potential was plotted against the concentration of K+ (0.5 to 16 mM) in solutions of fixed Na+ or Ca++ concentration. The slopes of the curves for the mutant membrane were steeper than those for the wild type at the lower concentrations of K+. Inclusion of 2 mM tetraethylammonium chloride (TEA-Cl) counteracted the mutational effects. Spontaneous action potentials in Ba-solution and the electrically evoked action potentials in various solutions are normal in this mutant. We conclude that the resting permeability to K+ relative to the permeabilities to Na+ and Ca++ has been increased by the mutation.  相似文献   

18.
The authors examined the effects of manganese salts on the interaction of the AIDS-related pathogen,Cryptosporidium parvum, with human ileoadenocarcinoma (HCT-8) cells in vitro. Manganese (Mn) inhibited binding ofC. parvum sporozoite membrane antigens to intact, fixed HCT-8 cells in a dose-dependent fashion, whereas Ca++, Mg++, and Zn++ salts had no effect. Manganese was also found to affect sporozoite penetration of live HCT-8 cells, which resulted in a dose-dependent inhibition of parasite development. However, the levels of Mn++ needed in the live cell assays was approx 10-fold greater than in the fixed-cell assays. This inhibition of parasite development was not reversible when Ca++ or Mg++ were used as competitors. Oral supplementation of suckling mice infected withC. parvum with MnSO4 resulted in significant reductions and, in some cases, elimination of intestinally derived oocysts.  相似文献   

19.
The CA1 pyramidal cells appear damaged in micrographs of guinea pig hippocampal slices incubated in normal physiological buffer at 36–37°C. This is remedied if slices are incubated in modified buffers for the first 45 min. Cell morphology is improved if this buffer is devoid of added Ca2+ and much improved if it contains N-methyl-D-aspartate (NMDA) receptor antagonists or 0 mM Ca2+ and 10 mM Mg2+. The cells then appear similar to CA1 pyramidal cells in situ. These findings support the notion that NMDA receptor activation and Ca2+, acting in the period immediately after slice preparation, permanently damage CA1 pyramidal cells in vitro.  相似文献   

20.
The membrane excitability and contraction were examined in single barnacle muscle fibers with different internal Ca++ concentrations by using buffer solutions made up with EGTA and Ca-gluconate in various proportions. During the passage of dc currents the membrane shows all-or-none spike potentials for internal Ca++ concentrations below about 8 x 10-8 M, oscillatory potential changes in the range between 8 x 10-8 to 5 x 10-7 M, but neither oscillatory nor spike potentials were seen for concentrations above 5 x 10-7 M. All-or-none spike potentials were suppressed when the internal Mg++ concentration exceeded 5 mM. The suppression threshold of the internal Ca++ concentration for the Sr spike is much higher than that for the Ca spike. The threshold concentration of internal Ca++ for contraction was about 8 x 10-7 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号