首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The p34cdc2 protein serine-threonine kinase plays an essential role in the life cycle of fission yeast, being required for both the G1-S and G2-M transitions during mitotic growth, and also for the second meiotic nuclear division. Functional homologues of p34cdc2 (each ca. 60 % identical to the fission yeast prototype) have been isolated from organisms as diverse as humans, insects and plants, and there is now considerable evidence supporting the view that fundamental aspects of the cell cycle controls uncovered in fission yeast will prove to be conserved in all eukaryotes. By comparing the amino acid sequences of fission yeast p34cdc2 with its higher eukaryotic counterparts it is possible to identify conserved residues that are likely to be centrally important for p34cdc2 function. Here the effects are described of mutating a number of these conserved residues. Twenty-three new mutant alleles have been constructed and tested. We show that replacing cysteine 67 with trypthophan renders the resulting mutant protein p80cdc25-independent (while neither leucine, isoleucine nor valine has this effect) and that several of the amino acids within the highly conserved PSTAIRE region are not absolutely required for p34cdc2 function. Five acidic amino acids have also been mutated within p34cdc2, which are invariant across the eukaryotic protein kinase family. Acid-to-base mutations at three of these residues resulted in a dominant-negative, cell cycle arrest phenotype while similar mutations at the other two simply abolished p34cdc2 protein function. The results are discussed with reference to the predicted tertiary structure of the p34cdc2 enzyme.  相似文献   

2.
The p34cdc2 protein kinase plays a key role in the control of the mitotic cell cycle of fission yeast, being required for both entry into S-phase and for entry into mitosis in the mitotic cell cycle, as well as for the initiation of the second meiotic nuclear division. In recent years, structural and functional homologues of p34cdc2, as well as several of the proteins that interact with and regulate p34cdc2 function in fission yeast, have been identified in a wide range of higher eukaryotic cell types, suggesting that the control mechanisms uncovered in this simple eukaryote are likely to be well conserved across evolution. Here we describe the construction and characterisation of a fission yeast strain in which the endogenous p34cdc2 protein is entirely absent and is replaced by its human functional homologue p34CDC2, We have used this strain to analyse aspects of the function of the human p34CDC2 protein genetically. We show that the function of the human p34CDC2 protein in fission yeast cells is dependent upon the action of the protein tyrosine phosphatase p80cdc25 that it responds to altered levels of both the mitotic inhibitor p1072331 and the p34cdc2-binding protein p13suc1, and is lethal in combination with the mutant B-type cyclin p56cdc13-117. In addition, we demonstrate that the human p34CDC2 protein is proficient for fission yeast meiosis, and examine the behaviour of two mutant p34CDC2 proteins in fission yeast.  相似文献   

3.
4.
Programmed cell death in fission yeast   总被引:2,自引:0,他引:2  
Recently a metacaspase, encoded by YCA1, has been implicated in a primitive form of apoptosis or programmed cell death in yeast. Previously it had been shown that over-expression of mammalian pro-apoptotic proteins can induce cell death in yeast, but the mechanism of how cell death occurred was not clearly established. More recently, it has been shown that DNA or oxidative damage, or other cell cycle blocks, can result in cell death that mimics apoptosis in higher cells. Also, in fission yeast deletion of genes required for triacylglycerol synthesis leads to cell death and expression of apoptotic markers. A metacaspase sharing greater than 40% identity to budding yeast Yca1 has been identified in fission yeast, however, its role in programmed cell death is not yet known. Analysis of the genetic pathways that influence cell death in yeast may provide insights into the mechanisms of apoptosis in all eukaryotic organisms.  相似文献   

5.
The protein kinase p34cdc2 is required at the onset of DNA replication and for entry into mitosis. The catalytic subunit and its regulatory proteins, notably the cyclins, are conserved from yeast to man. This suggests that the control mechanisms necessary for progression through the cell cycle in fission yeast are conserved throughout evolution. This work describes the characterization of a fission yeast strain that is dependent for cell cycle progression on the activity of the p34CDC2 protein kinase from chicken. The response of the chicken p34CDC2 protein kinase to cell cycle components of fission yeast was examined. Cells expressing the chicken p34CDC2 protein divide at reduced size at 31° C. Cells are temperature sensitive at 35.5° C and die as a result of mitotic catastrophe. This phenotype can be rescued by delaying cell cycle progression at the G1-S transition by adding low concentrations of hydroxyurea. Schizosaccharomyces pombe cells that are dependent on chicken p34CDC2 are cold sensitive. At 19° C to 25° C cells arrest in the G1 phase, while traversal of the G2-M transition is not blocked at low temperature. Expression of chicken p34CDC2 in the cold-sensitive G2-M mutant cdc2A21 suppresses the G1 arrest. Received: 14 October 1998 / Accepted: 15 March 1999  相似文献   

6.
Mutants of the fission yeast Schizosaccharomyces pombe which are sensitive to UV and/or γ-irradiation have been assigned to 23 complementation groups, which can be assigned to three phenotypic groups. We have cloned genes which correct the deficiency in mutants corresponding to 12 of the complementation groups. Three genes in the excision-repair pathway have a high degree of sequence conservation with excision-repair genes from the evolutionarily distant budding yeast Saccharomyces cerevisiae. In contrast, those genes in the recombination repair pathway which have been characterised so far, show little homology with any previously characterised genes.  相似文献   

7.
8.
9.
We describe a screen to isolate cDNAs encoding Drosophila mitosis inhibitors capable of suppressing the mitotic catastrophe phenotype resulting in Schizosaccharomyces pombe from the combination of the weel-50 mutation with either a deletion allele of mil1, or with overexpression of cdc25 +. One plasmid was isolated which could suppress the temperature sensitive lethality of both these strains. The cDNA in this plasmid encodes a protein highly homologous to the DEAD-box family of ATP-dependent RNA helicases, rather than to protein kinases as might be expected. It is possible that the RNA helicase described here may regulate entry into mitosis by down regulating the expression of other genes whose activity may be rate-limiting for entry into mitosis.  相似文献   

10.
NIN1 is an essential gene for growth of the yeastSaccharomyces cerevisiae and was recently found to encode a component of the regulatory subunit of the 26S proteasome. Thenin1-1 mutant is temperature sensitive and its main defect is in G1/S progression and G2/M progression at non-permissive temperatures. One of the two multicopy suppressors ofnin1-1, SUN2 (SUppressor of Nin1-1), was found to encode a protein of 523 amino acids whose sequence is similar to those ofDrosophila melanogaster diphenol oxidase A2 and the mouse mast-cell Tum transplantation antigen, P91A. The C-terminal half of Sun2p was found to be functional as Sun2p at 25° C, 30° C, and 34° C but not at 37° C. The open reading frame (ORF) of theDrosophila diphenol oxidase A2 gene (Dox-A2) was obtained from a lambda phage cDNA library using the polymerase chain reaction technique. TheDox-A2 ORF driven by theTDH3 promoter complemented the phenotype of a strain deleted forsun2. ThisDox-A2-dependent strain was temperature sensitive and accumulated dumb-bell-shaped cells, with an undivided nucleus at the isthmus, after temperature upshift. This morphology is similar to that ofnin1-1 cells kept at a restrictive temperature. These results suggest thatSUN2 is a functional counterpart ofDox-A2 and that these genes play a pivotal role in the cell cycle in each organism.  相似文献   

11.
12.
Summary The cdc2 + gene function plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. Recessive temperature-sensitive mutations in the cdc2 gene cause cell cycle arrest when shifted to the restrictive temperature, while a second class of mutations within the cdc2 gene causes a premature advancement into mitosis. Previously the cdc2 + gene has been cloned and has been shown to encode a 34 kDa phosphoprotein with in vitro protein kinase activity. Here we describe the cloning of 11 mutant alleles of the cdc2 gene using two simple methods, one of which is presented here for the first time. We have sequenced these alleles and find a variety of single amino acid substitutions mapping throughtout the cdc2 protein. Analysis of these mutations has identified a number of regions within the cdc2 protein that are important for cdc2 + activity and regulation. These include regions which may be involved in the interaction of the cdc2 + gene product with the proteins encoded by the wee1 +, cdc13 + and suc1 + genes.  相似文献   

13.
In fission yeast, inactivation of the Cdc25 phosphatase by checkpoint kinases participates in the signaling cascade that temporarily stops cell cycle progression after DNA damage. In human, CDC25B and C are also known to be targeted by a similar checkpoint machinery. We have examined by homologous recombination, whether CDC25B and CDC25C were able to substitute for the function of fission yeast Cdc25. We demonstrate that (i) CDC25B and C efficiently replace Cdc25 for vegetative growth, (ii) CDC25C is able to restore a functional checkpoint in response to ionizing radiation in both a Chk1- and Cds1-dependent manner, (iii) CDC25B and C are equally efficient in the response to UV irradiation, CDC25B being only dependent on Chk1, while CDC25C depends on both Chk1 and Cds1, and (iv) CDC25C is able to restore a functional DNA replication checkpoint induced by hydroxyurea in a Cds1-dependent manner. The consequences of these findings on our current view of the checkpoint cascade are discussed.  相似文献   

14.
In fission yeast the Weel kinase and the functionally redundant Mikl kinase provide a regulatory mechanism to ensure that mitosis is initiated only after the completion of DNA synthesis. Yeast in which both Weel and Mik1 kinases are defective exhibit a mitotic catastrophe phenotype, presumably due to premature entry into mitosis. Because of the functional conservation of cell cycle control elements, the expression of a vertebrate weel or mikl homolog would be expected to rescue such lethal mutations in yeast. A Xenopus total ovary cDNA library was constructed in a fission yeast expression vector and used to transform a yeast temperature-dependent mitotic catastrophe mutant defective in both weel and mikl. Here we report the identification of a Xenopus cDNA clone that can rescue several different yeast mitotic catastrophe mutants defective in Weel kinase function. The expression of this clone in a weel/mikl-deficient mutant causes an elongated cell phenotype under non-permissive growth conditions. The 2.0 kb cDNA clone contains an open reading frame of 1263 nucleotides, encoding a predicted 47 kDa protein. Bacterially expressed recombinant protein was used to raise a polyclonal antibody, which specifically recognizes a 47 kDa protein from Xenopus oocyte nuclei, suggesting the gene encodes a nuclear protein in Xenopus. The ability of this cDNA to complement mitotic catastrophe mutations is independent of Weel kinase activity.  相似文献   

15.
Summary A novel protein kinase homologue (KNS1) has been identified in Saccharomyces cerevisiae. KNS1 contains an open reading frame of 720 codons. The carboxy-terminal portion of the predicted protein sequence is similar to that of many other protein kinases, exhibiting 36% identity to the cdc2 gene product of Schizosaccharomyces pombe and 34% identity to the CDC28 gene product of S. cerevisiae. Deletion mutations were constructed in the KNS1 gene. kns1 mutants grow at the same rate as wild-type cells using several different carbon sources. They mate at normal efficiencies, and they sporulate successfully. No defects were found in entry into or exit from stationary phase. Thus, the KNS1 gene is not essential for cell growth and a variety of other cellular processes in yeast.  相似文献   

16.
Summary The protein serine-threonine kinase p34 cdc2+ plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. p34 cdc2+ function is required both for the initiation of DNA replication and for entry into mitosis, and is also required for the initiation of the second meiotic nuclear division. Recent extensive analysis of p34 cdc2+ homologue proteins in higher eukaryotes has demonstrated that p34 cdc2+ function is likely to be conserved in all eukaryotic cells. Here we report the isolation and characterisation of five new temperature-sensitive alleles of the cdc 2+ gene. All five have been cloned and sequenced, together with the meiotically defective cdc2-N22 allele, bringing the total of p34 cdc2+ mutants cloned in this and previous reports to seventeen. The five temperature-sensitive alleles define four separate mutations within the p34 cdc2+ protein sequence, two of which give rise to cell cycle arrest in G2 only, when shifted to the restrictive temperature. The nature of the mutation in each protein is described and possible implications for the structure and function of p34 cdc2+ discussed.  相似文献   

17.
Thecdc2 + gene product (p34cdc2) is a protein kinase that regulates entry into mitosis in all eukaryotic cells. The role that p34cdc2 plays in the cell cycle has been extensively investigated in a number of organisms, including the fission yeastSchizosaccharomyces pombe. To study the degree of functional conservation among evolutionarily distant p34cdc2 proteins, we have constructed aS. pombe strain in which the yeastcdc2 + gene has been replaced by itsDrosophila homologue CDC2Dm (theCDC2Dm strain). ThisCDC2Dm S. pombe strain is viable, capable of mating and producing four viable meiotic products, indicating that the fly p34CDC2Dm recognizes all the essentialS. pombe cdc2 + substrates, and that it is recognized by cyclin partners and other elements required for its activity. The p34CDC2Dm protein yields a lethal phenotype in combination with the mutant B-type cyclin p56cdc13-117, suggesting that thisS. pombe cyclin might interact less efficiently with theDrosophila protein than with its native p34cdc2 counterpart. ThisCDC2Dm strain also responds to nutritional starvation and to incomplete DNA synthesis, indicating that proteins involved in these signal transduction pathways, interact properly with p34CDC2Dm (and/or that p34cdc2-independent pathways are used). TheCDC2Dm gene produces a ‘wee’ phenotype, and it is largely insensitive to the action of theS. pombe weel + mitotic inhibitor, suggesting thatDrosophila weel + homologue might not be functionally conserved. ThisCDC2Dm strain is hypersensitive to UV irradiation, to the same degree asweel-deficient mutants. A strain which co-expresses theDrosophila and yeastcdc2+ genes shows a dominantwee phenotype, but displays a wild-type sensitivity to UV irradiation, suggesting that p34cdc2 triggers mitosis and influences the UV sensitivity by independent mechanisms.  相似文献   

18.
LTE1 encodes a homolog of GDP-GTP exchange factors for the Ras superfamily and is required at low temperatures for cell cycle progression at the stage of the termination of M phase inSaccharomyces cerevisiae. We isolated extragenic suppressors which suppress the cold sensitivity oflte1 cells and confer a temperature-sensitive phenotype on cells. Cells mutant for the suppressor alone were arrested at telophase at non-permissive temperatures and the terminal phenotype was almost identical to that oflte1 cells at non-permissive temperatures. Genetic analysis revealed that the suppressor is allelic toCDC15, which encodes a protein kinase. Thecdc15 mutations thus isolated were recessive with regard to the temperature-sensitive phenotype and were dominant with respect to suppression oflte1. We isolatedCDC14 as a low-copy-number suppressor ofcdc15-rlt1.CDC14 encodes a phosphotyrosine phosphatase (PTPase) and is essential for termination of M phase. An extra copy ofCDC14 suppressed the temperature sensitivity ofcdc15-rlt1 cells, but not that ofcdc15-1 cells. In addition, some residues that are essential for the Cdc14 PTPase activity were found to be non-essential for the suppression. These results strongly indicate that Cdc14 possesses dual functions; PTPase activity is needed for one function but not for the other. We postulate that the cooperative action of Cdc14 and Cdc15 plays an essential role in the termination of M phase.  相似文献   

19.
Morphogenesis in the yeast Saccharomyes cerevisiae consists primarily of bud formation. Certain cell division cycle (CDC) genes, CDC3, CDC10, CDC11, CDC12, are known to be involved in events critical to the pattern of bud growth and the completion of cytokinesis. Their products are associated with the formation of a ring of neck filaments that forms at the region of the mother cell-bud junction during mitosis. Morphogenesis in Candida albicans, a major fungal pathogen of humans, consists of both budding and the formation of hyphae. The latter is thought to be related to the pathogenesis and invasiveness of C. albicans. We have isolated and characterized C. albicans homologs of the S. cerevisiae CDC3 and CDC10 genes. Both C. albicans genes are capable of complementing defects in the respective S. cerevisiae genes. RNA analysis of one of the genes suggests that it is a regulated gene, with higher overall expression levels during the hyphal phase than in the yeast phase. Not surprisingly, DNA sequence analysis reveals that the proteins share extensive homology at the amino acid level with their respective S. cerevisiae counterparts. Related genes are also found in other species of Candida and, more importantly, in filamentous fungi such as Aspergillus nidulans and Neurospora crassa. A database search revealed significant sequence similarity with two peptides, one from Drosophila and one from mouse, suggesting strong evolutionary conservation of function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号