首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycation is a non-enzymatic reaction that is initiated by the primary addition of sugars to amino groups of proteins. In the early phase of glycation, the synthesis of intermediates leads to formation of Amadori compounds. In the last phase, advanced glycation end products (AGE) are irreversibly formed following a complex cascade of reactions. It has recently been shown that glycation also affects diabetes-related complications and Alzheimer’s disease. In this study, human serum albumin at a concentration of 10 mg/ml was incubated in PBS with 40 mM of glucose and in different concentrations of papaverine (25, 100, 250, 500 μM) for 42 days at 37 °C. HSA with no additives as well as with glucose 40 mM were incubated as a control and as a glycated sample, respectively. Following the incubation, the samples were prepared for circular dichroism, fluorescence and absorbance techniques. The results showed that in presence of papaverine and glucose, the glycation of HSA increased notably compared with the glycated sample. In conclusion, in this work, we showed that papaverine affects HSA and increases its glycation level.  相似文献   

2.
The interaction of proteins with glucose results in their non-enzymatic glycation and influences their structural and functional properties. Human serum albumin (HSA) interacts with glucose forming glycated HSA. However, the glucose binding sites and the thermodynamic characteristics of the glycated HSA require further delineation. Here, the binding properties of HSA and glucose were studied utilizing fluorescent techniques. HSA was incubated with glucose in the 0-300mM range at 27 or 37 degrees C. The interaction of HSA with glucose showed two sets of binding sites. The first set consists of two sites with positive cooperativity and the second set consists of nine identical non-cooperative sites. The percentage of glycated HSA (gly%) and the moles of glucose bound to moles of HSA (r) were utilized to obtain binding constants and thermodynamic parameters based on the Wyman binding potential. The enthalpy of binding, obtained by van't Hoff relation, presented exothermicity up to 7mM glucose (126mg/dl, normal range) and endothermic propensity at higher glucose concentrations (>7mM, diabetic range). The start of endothermic propensity was consistent with the diabetic range of glucose concentration and indicates unfolding of HSA. The Gibbs free energy and entropy of binding further supports the unfolding of HSA. Therefore, glucose interacts with multiple sites on HSA affecting its biochemical and biophysical properties. This may interfere with HSA normal function contributing to diabetic complications.  相似文献   

3.
Acyl glucuronides bind irreversibly to plasma proteins, and one mechanism proposed for this covalent binding is similar to that for glycation of protein by reducing sugars. Because glycation of protein by glucose and other reducing sugars can alter protein function, this lead to the hypothesis that the glycation of proteins by acyl glucuronides may cause similar effects. When human serum albumin (HSA) was incubated with 0.5 M glucose for 5 days, the unbound fractions of diazepam and warfarin were increased by 41 and 35%, respectively, less than that caused by glucuronic acid which increased the unbound fractions by 90% for diazepam and 420% for warfarin. When HSA was incubated with suprofen glucuronide (SG) at a much lower concentration of 0.005 M for only 24 h, the effects on the unbound fractions of diazepam and warfarin to HSA were altered dramatically with increases of 340 and 230%, respectively. After incubation of superoxide dismutase (SOD) with 0.5 or 1 M reducing sugars for 14 days, the enzyme activity decreased to 82 and 61% of initial levels at day 14, respectively, whereas glucuronic acid almost completely inactivated the enzyme activity over the same period. Even at a very low concentration (0.005 M) of SG, SOD activity was reduced significantly to 11% of initial levels by day 14, which was comparable to the effect by 0.5 and 1.0 M concentrations of glucuronic acid. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and matrix associated laser desorption/ionization time of flight mass spectrometry indicated that several equivalents of reducing sugars or SG became attached to albumin after incubation. These results suggest that acyl glucuronides may affect the function of proteins by the formation of glycated protein in vivo and may be associated with the toxicity of xenobiotics metabolized to labile acyl glucuronides.  相似文献   

4.
Glucose can react non-enzymatically with amino groups of, for example, proteins, to yield derivatives termed advanced glycation end products (AGE), which contribute to many chronic progressive diseases associated with microvascular complications. The study aimed to determine the effect of AGE-modified albumin on THP-1 cells and human monocyte-derived macrophages. Bovine serum albumin (BSA) or human serum albumin (HSA), modified by glucose-derived AGE, was prepared by incubation with glucose for differing periods of time. Alternatively, BSA was incubated with sodium cyanoborohydride and glyoxylic acid to produce N(epsilon)-(carboxymethyl)lysine-modified BSA (CML-BSA). Stimulation for 24h of THP-1 cells with BSA, incubated for 6-8 weeks with glucose, induced significant VEGF release. Human monocyte-derived macrophages stimulated with extensively glycated HSA also showed significant VEGF release, as well as upregulation of IL-8 production, incubation for 6h with extensively glycated HSA increased release of TNFalpha and expression of tissue factor. Finally, addition of CML-BSA resulted in significant induction of TNFalpha and VEGF release. We demonstrate that a range of different methods of glycation of BSA and HSA, including CML-BSA, resulted in the induction of VEGF, TNFalpha, IL-8 and expression of tissue factor, according to length of stimulation and different glycation products used, suggesting that AGE-induced activation of macrophages may contribute to vascular complications by regulation of angiogenic, inflammatory and pro-coagulant processes.  相似文献   

5.
The interaction of reducing carbohydrates with proteins leads to a cascade of reactions that are known as glycation or Maillard reaction. We studied the impact of incubation of human serum albumin (HSA) with glucose, at various concentrations and incubation times, on the extent of HSA glycation and structural changes using circular dichroism (CD), fluorescence, and microviscometer techniques. The number of moles of glucose bound per mole of HSA (r), the number of reacted lysine and arginine residues, and the Amadori product formation during glycation were determined using 3-(dansylamino) phenyl boronic acid, fluorescamine, 9, 10 phenanthrenequinone, and p-nitroblue tetrazoliumchloride, respectively. The formation of advanced glycation end products (AGE) was detected using the autofluorescence characteristic of samples. We identified three stages of Maillard reaction for HSA upon incubation with the physiological level of glucose (0-630 mg/dl): the early, intermediate and late stages, which occurred after 7-14, 21, and >28 days of incubation, respectively. Structural information, Stokes radius, and 1-anilinonaphthalene-8-sulfonate (ANS) binding data indicated the formation of a molten globule-like state of HSA after 21 days of incubation with 35 mM (630 mg/dl) glucose. Thus, the extent of the Maillard reaction was influenced by the concentration of glucose and incubation time, such that longer exposure of HSA to glucose may have a more deleterious effect on its structure and especially on its half-life and turnover in the circulation. Our results suggest that in acute diabetes mellitus patients, HSA, after 21 days of glycation, passes through a molten globule-like state and may contribute to the pathogenesis of diabetes, and perhaps other diseases.  相似文献   

6.
Glucose reacts with proteins nonenzymatically under physiological conditions. Such glycation is exacerbated in diabetic patients with high levels of blood sugar and induces various complications. Human albumin serum (HSA) is the most abundant protein in plasma and is glycated by glucose. The glycation sites on HSA remain controversial among different studies. Here, we report two protein crystal structures of HSA in complex with either glucose or fructose. These crystal structures reveal the presence of linear forms of sugar for both monosaccharides. The linear form of glucose forms a covalent bond to Lys-195 of HSA, but this is not the case for fructose. Based on these structures, we propose a mechanism for glucose ring opening involving both residues Lys-195 and Lys-199. These results provide mechanistic insights to understand the glucose ring-opening reaction and the glycation of proteins by monosaccharides.  相似文献   

7.
Advanced glycation end products (AGEs) are known to be involved in the pathogenesis of several diseases, in particular diabetes, via signaling through their receptor. Numerous studies have been carried out on protein-sugar interactions at very high concentrations of the latter. The objective of this investigation was to determine the effects of nonenzymatic glycation induced by reducing sugars on the secondary structure of human serum albumin (HSA) under different physiological conditions and to correlate that with expression of RAGE (receptor for advanced glycation end products) on HUVECs (human umbilical vein endothelial cells) in a controlled hemodynamic environment. Our results indicate that RAGE expression is shear stress modulated and that glycated HSA enhances the expression further. The secondary structure of AGE-HSA derived from glucose at 20 mM contains higher α-helical content and elicits maximum expression of the receptor. The effect of shear stress at 10 dynes cm(-2) is independent of AGE-HSA.  相似文献   

8.
Diabetes is a major problem in the world. The proteins became modified during glycation after reacting with the reducing sugars (e.g. D-glucose) via non-enzymatic pathways. The glycated analogue of human serum albumin (HSA) has been characterized with the help of multi-spectroscopic methods. It has been observed that six glucose molecules can bind covalently to HSA under experimental condition. The binding affinity of the modified HSA towards the dietary polyphenols has been estimated using UV–vis and fluorescence spectroscopic techniques. The binding constant values of the ligands were found to decrease after the modification of HSA.  相似文献   

9.
Advanced glycation end products (AGEs), which are the final products of glycation, have a major role in diabetic complication and neurodegenerative disorders. The 3-β-hydroxybutyrate (3BHB), a ketone body which is produced by the liver, can be detected in increased concentrations in individuals post fasting and prolonged exercises and in diabetic (type I) patients. In this study, the inhibitory effect of 3BHB on AGEs formation by glucose from the human serum albumin (HSA) was studied at physiological conditions after 35 days of incubation, using physical techniques such as circular dichroism and fluorescence spectroscopy, as well as differential scanning calorimetry (DSC). The fluorescence intensity measurements of glycated HSA by glucose (GHSA) in the presence of 3BHB indicate a decrease in AGEs formation. The DSC deconvolution profile results also confirm the protective role of 3BHB on incubated with glucose by preventing the enthalpy reduction of the HSA tail segment, compared with the deconvolution profile seen for incubated with glucose alone. The concentration of 3BHB used in this study is in accordance with the concentration detected in the body of individuals post fasting and prolonged exercises.  相似文献   

10.
Non-enzymic glycation of human serum albumin (HSA) induces a change in its charge heterogeneity that may account for its particular renal clearance in patients with early diabetic nephropathy. A new high-performance liquid chromatographic analysis for the study of HSA heterogeneity is described based on a high content of formic acid in the mobile phase combined with a concave gradient of isopropanol. Under these conditions, native HSA was separated into three individual components (I, II and III). When glycated HSA was analysed, it was found that although the present method is not suitable for the separation of glycated from non-glycated HSA, it shows the effect of glycation in producing changes in HSA heterogeneity that are different from those reported on surface change. This finding suggests an additional factor (probably conformational changes) that is contributing to the heterogeneity of glycated HSA.  相似文献   

11.
Human serum albumin (HSA) was shown to mediate oligoribonucleotide cleavage. Nonenzymatic glycation of HSA decreased the ribonuclease-like activity of the protein. According to (31)P NMR data, both native and glycated albumins induced hydrolysis of RNA molecule through 2',3'-cyclophosphate intermediates. A feasible mechanism of RNA hydrolysis by native albumin and its clinically relevant modification was discussed.  相似文献   

12.
Acetohexamide is a drug used to treat type II diabetes and is tightly bound to the protein human serum albumin (HSA) in the circulation. It has been proposed that the binding of some drugs with HSA can be affected by the non-enzymatic glycation of this protein. This study used high-performance affinity chromatography to examine the changes in acetohexamide–HSA binding that take place as the glycation of HSA is increased. It was found in frontal analysis experiments that the binding of acetohexamide to glycated HSA could be described by a two-site model involving both strong and weak affinity interactions. The average association equilibrium constant (Ka) for the high affinity interactions was in the range of 1.2–2.0 × 105 M−1 and increased in moving from normal HSA to HSA with glycation levels that might be found in advanced diabetes. It was found through competition studies that acetohexamide was binding at both Sudlow sites I and II on the glycated HSA. The Ka for acetohexamide at Sudlow site I increased by 40% in going from normal HSA to minimally glycated HSA but then decreased back to near-normal values in going to more highly glycated HSA. At Sudlow site II, the Ka for acetohexamide first decreased by about 40% and then increased in going from normal HSA to minimally glycated HSA and more highly glycated HSA. This information demonstrates the importance of conducting both frontal analysis and site-specific binding studies in examining the effects of glycation on the interactions of a drug with HSA.  相似文献   

13.
Acetoacetate (AA) is an important ketone body, which produces reactive oxygen species (ROS). Advanced glycation end products (AGEs) are defined as final products of glycation process whose production is influenced by the levels of ROS. The accumulation of AGEs in the body contributes to pathogenesis of many diseases including complications of diabetes, and Alzheimer’s and Parkinson’s disease. Here, we evaluated the impact of AA on production of AGEs upon incubation of human serum albumin (HSA) with glucose. The effect of AA on the AGEs formation of HSA was studied under physiological conditions after incubation with glucose for 35 days. The physical techniques including circular dichroism (CD) and fluorescence spectroscopy were used to assess the impact of AA on formation and structural changes of glycated HSA (GHSA). Our results indicated that the secondary and tertiary structural changes of GHSA were increased in the presence of AA. The fluorescence intensity measurements of AGEs also showed an increase in AGEs formation. Acetoacetate has an activator effect in formation of AGEs through ROS production. The presence of AA may result in enhanced glycation in the presence of glucose and severity of complications associated with accumulation of AGEs.  相似文献   

14.
This report examines the use of high-performance affinity chromatography as a screening tool for studying the change in binding by sulfonylurea drugs to the protein human serum albumin (HSA) during diabetes. The effects of both the non-enzymatic glycation of HSA and the presence of fatty acids on these interactions were considered using a zonal elution format. It was found that there was a significant increase (i.e., 2.7- to 3.6-fold) in the relative retention of several sulfonylurea drugs (i.e., acetohexamide, tolbutamide, glybenclamide and gliclazide) on columns containing normal versus glycated HSA. The addition of various long chain fatty acids to the mobile phase gave the same trend in retention for the tested drugs on both the HSA and glycated HSA columns, generally leading to lower binding. Most of the fatty acids examined produced similar or moderately different relative shifts in retention; however, palmitic acid was found to produce a much larger change in retention on columns containing glycated HSA versus normal HSA under the conditions used in this study.  相似文献   

15.
Among substances which may prove useful in preventing or reducing the progression of glycooxidative modifications of proteins, heparin plays a unique role. To elucidate the mechanism whereby heparin may favourably influence the protein structure during glycation, human serum albumin (HSA) was glycated with both 25 and 50 mM glucose in the absence and presence of 12 microg.mL(-1) low-molecular-mass heparin. Glycation caused: (a) modifications of fluorescence emission and excitation spectra consistent with the covalent attachment of glucose to protein; (b) a significant increase in the esterase activity of HSA on p-nitrophenyl acetate; (c) a reduced susceptibility to tryptic digestion and (d) enhanced formation of high-molecular mass aggregates of HSA. These alterations were accompanied by oxidative reactions, as the EPR spectra showed a clear-cut radical signal, dependent on glucose concentration, further confirmed by measurement of the carbonyl content of HSA, as an indirect proof of oxidative damage. In the presence of heparin all the above alterations, especially at 25 mM glucose, turned out to be antagonized. The effects of heparin were dependent on its specific binding to HSA, which triggered an oxidative mechanism strikingly different from that caused by glucose. In the presence of heparin, only the radical species catalyzed by heparin was detected across all samples of glycated HSA, irrespective of glucose concentration. In addition, at 25 mM glucose, enhancement of the oxidative capacity of heparin was also observed. The results demonstrate that the oxidative mechanism sustained by heparin mediates biological effects that may be beneficial in reducing the extent of glycooxidative damage on HSA.  相似文献   

16.
Summary

This study examines the possible action of copper on advanced glycation. Copper has been shown to induce fluorescence due to advanced-glycated-end-products (AGEs) on albumin incubated with glucose, and this was interpreted as activation of the glucose or Amadori product (AP) autoxidation. We glycated albumin (60 g/L) to several levels with increasing concentrations of glucose. The dialysed glucose-free glycated albumin was then incubated with 1.5 μmol/L copper or 1 mmol/L diethylenetriaminepentaacetic acid (DTPA), plus or minus glucose. The production of AP, measured as furosine, was similar whether DTPA or copper was present in the incubation medium. It linearly increased as a function of time and glucose concentration in both cases up to a maximum (furosine around 20 mmol/g protein), indicating saturation of the free NH2 residues on the protein. The fluorescence due to AGEs increased linearly over time for glycated albumin incubated without glucose, and exponentially when glucose was added to the incubation medium. This fluorescence was also unaffected by DTPA or copper for a glucose concentration below 125 mmol/L and initial furosine below 10 mmol/g. However copper caused a slight activation in samples with very high glucose (1.25 mol/L) and furosine (30–40 mmol/g) concentrations. We therefore find no effect of copper in this experiment, because the copper concentration is lower and the albumin higher than that used in previous studies. In these conditions, albumin chelates copper and inhibits its oxidative activity. The protein concentrations used in most in vitro studies showing a copper effect were below 10 g/L with copper often above 10 μmol/L, so that copper may act oxidatively. As the lens and arterial wall have high protein concentrations, copper should have no action on protein glycation in vivo, unless altered protein structure impedes the inactivation of copper by chelation.  相似文献   

17.
We monitored the unfolding of human serum albumin (HSA) and glycated human serum albumin (gHSA) subjected to guanidine hydrochloride (GndHCl) by using fluorescence and circular dichroism (CD) spectroscopy. A two-state model with sloping baselines best described the Trp-214 fluorescence unfolding measurements, while a three-state model best described the far-UV CD unfolding data. Glycation of HSA increased the [D](50%) point by approximately 0.20M. This corresponded to an increase in the free energy of unfolding of gHSA relative to HSA of 2.6kJ/mol. The intrinsic fluorescence of Trp-214 in gHSA is 0.72 of that of HSA and the far-UV CD spectrum of gHSA is nearly identical to that of HSA. These results showed that glycation altered the local structure around Trp-214 while not significantly impacting the secondary structure, and this alteration translated into an overall change in the stability of gHSA compared to HSA.  相似文献   

18.
d-Ribose is active in glycation and rapidly produces advanced glycation end products, leading to cell death and to cognitive impairment in mice. Glycated serum protein (GSP) is a relatively short-term biomarker for glycemic control in diabetes mellitus. However, whether d-ribose is related to GSP is unclear. The aim of this work was to identify the contribution of d-ribose to GSP compared to d-glucose. Here, we showed that the yield of glycated human serum albumin with d-ribose was at least two-fold higher than that with d-glucose in a 2-week incubation. The glycation of human serum albumin (HSA) with d-ribose was much faster than that with d-glucose, as determined by monitoring changes in the fluorescent intensity of glycation products with time. Liquid chromatography-mass spectrometry/mass spectrometry revealed that 17 and 7 lysine residues on HSA were glycated in the presence of d-ribose and d-glucose, respectively, even when the concentration ratio [d-ribose]/[d-glucose] was 1/50. The intraperitoneal injection of d-ribose significantly increased the GSP levels in Sprague Dawley rats, but the injection of d-glucose did not. The level of d-ribose was more positively associated with GSP than the level of d-glucose in streptozotocin-treated rats. In diabetic patients, the levels of both d-ribose and d-glucose were closely related to the level of GSP. Together, these in vitro and in vivo findings indicated that d-ribose is an important contributor to the glycation of serum protein, compared to d-glucose. To assess GSP levels in diabetes mellitus, we should consider the contribution from d-ribose, which plays a nonnegligible role.  相似文献   

19.
Kinetics of fatty acid binding ability of glycated human serum albumin (HSA) were investigated by fluorescent displacement technique with 1-anilino-8-naphtharene sulphonic acid (ANS method), and photometric detection of nonesterified-fatty-acid (NEFA method). Changing of binding affinities of glycated HSA toward oleic acid, linoleic acid, lauric acid, and caproic acid, were not observed by the ANS method. However, decreases of binding capacities after 55 days glycation were confirmed by the NEFA method in comparison to control HSA. The decrease in binding affinities was: oleic acid (84%), linoleic acid (84%), lauric acid (87%), and caproic acid (90%), respectively. The decreases were consistent with decrease of the intact lysine residues in glycated HSA. The present observation indicates that HSA promptly loses its binding ability to fatty acid as soon as the lysine residues at fatty acid binding sites are glycated.  相似文献   

20.
The elucidation of the controversial inhibitory effect of aminoguanidine (AG) on the cross-linking and fluorescent advanced glycation end products (AGEs) formation during long-term in vitro glycation of type I collagen with 250 mM reducing sugars or 0.5 mg/ml soluble glycated bovine serum albumin (AGE-BSA) was researched.Chromatographic and SDS–PAGE analyses revealed the formation of aggregates during collagen glycation. AG at all concentrations (5–80 mM) prevented the cross-linking of collagen peptides with monosaccharides but an increase in fluorescence with a maximum value at 10 mM AG was noticed. In the presence of AGE-BSA, AG prevented the cross-linking process and decreased the fluorescence levels in a concentration-dependent manner.Our results suggest that AG is an efficient inhibitor of collagen cross-linking and the highest increase in fluorescence due to reducing sugars and AG can be explained by the competition between guanidine group of AG and arginine residues of some protein-bound dideoxyosones, which could form fluorescent compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号