首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional fragments of presumably a relictual gametophytic self-incompatibility system (GSI) linked with the loci determining flower type were discovered by genetic analysis of an unilateral pre-zygotic barrier between the short-styled (thrum) morph of a heterostylous cross-pollinated species, Fagopyrum esculentum Moench., and a self-pollinator with homostylous flowers, F. homotropicum Ohnishi (asseccion C9139). The relic genes of GSI were revealed only in interspecific crosses. However, this is a direct experimental confirmation of a hypothesis proposed by Lewis (1954) which combined the heterostyly supergene components (G, P and A) with “pistil” and “pollen” parts of the S-locus of homomorphic self-incompatibility systems (I 1 and I 2). Also, this result provides strong evidence for the evolution of heterostyly upon the ruins of a gametophytic self-incompatibility system.  相似文献   

2.
It is known that a single-locus gametophytic self-incompatibility (GSI) system can persist with just two distinct alleles in an autotetraploid population, in contrast to diploid GSI systems, assuming "competitive interaction" in which heteroallelic pollen is universally compatible. The steady-state population structure of a GSI system in autotetraploids was investigated in an undivided population assuming "competitive interaction." A deterministic model was developed to predict the frequencies of genotypes with two, three, or four distinct S alleles, assuming no mutation or population subdivision. The model showed that unlike in diploid GSI systems, the limiting values of the frequencies of genotype classes do not minimize pollen wastage.  相似文献   

3.
Plant Molecular Biology Reporter - Plum (Prunus L.) is a species which exhibits a gametophytic self-incompatibility system “GSI” as the majority of species belonging to the Rosaceae...  相似文献   

4.

Background  

Within Rosaceae, the RNase based gametophytic self-incompatibility (GSI) system has been studied at the molecular level in Maloideae and Prunus species that have been diverging for, at least, 32 million years. In order to understand RNase based GSI evolution within this family, comparative studies must be performed, using similar methodologies.  相似文献   

5.
M. K. Uyenoyama 《Genetics》1991,128(2):453-469
Recent genetic analyses have demonstrated that self-incompatibility in flowering plants derives from the coordinated expression of a system of loci. To address the selective mechanisms through which a genetic system of this kind evolves, I present a three-locus model for the origin of gametophytic self-incompatibility. Conventional models assume that a single locus encodes all physiological effects associated with self-incompatibility and that the viability of offspring depends only on whether they were derived by selfing or outcrossing. My model explicitly represents the genetic determination of offspring viability by a locus subject to symmetrically overdominant selection. Initially, the level of expression of the proto-S locus is insufficient to induce self-incompatibility. Weak gametophytic self-incompatibility arises upon the introduction of a rare allele at an unlinked modifier locus which enhances the expression of the proto-S locus. While conventional models predict that the origin of self-incompatibility requires at least two- to threefold levels of inbreeding depression, I find that the comparatively low levels of inbreeding depression generated by a single overdominant locus can ensure the invasion of an enhancer of self-incompatibility under sufficiently high rates of receipt of self-pollen. Associations among components of the incompatibility system promote the origin of self-incompatibility. Enhancement of heterozygosity at the initially neutral proto-S locus improves offspring viability through associative overdominance. Further, the modifier that enhances the expression of self-incompatibility develops a direct association with heterozygosity at the overdominant viability locus. These results suggest that the evolutionary processes by which incompatibility systems originate may differ significantly from those associated with their breakdown. The genetic mechanism explored here may apply to the evolution of other systems that restrict reproduction, including maternal-fetal incompatibility in mammals.  相似文献   

6.
Many self-incompatible plant species exist in continuous populations in which individuals disperse locally. Local dispersal of pollen and seeds facilitates inbreeding because pollen pools are likely to contain relatives. Self-incompatibility promotes outbreeding because relatives are likely to carry incompatible alleles. Therefore, populations can experience an antagonism between these forces. In this study, a novel computational model is used to explore the effects of this antagonism on gene flow, allelic diversity, neighbourhood sizes, and identity by descent. I confirm that this antagonism is sensitive to dispersal levels and linkage. However, the results suggest that there is little to no difference between the effects of gametophytic and sporophytic self-incompatibility systems (GSI and SSI) on unlinked loci. More importantly, both GSI and SSI affect unlinked loci in a manner similar to obligate outcrossing without mating types. This suggests that the primary evolutionary impact of self-incompatibility systems may be to prevent selfing, and prevention of biparental inbreeding might be a beneficial side-effect.  相似文献   

7.
Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.  相似文献   

8.
Vieira J  Santos RA  Ferreira SM  Vieira CP 《Heredity》2008,101(4):351-358
In flowering plants, self-incompatibility is a genetic mechanism that prevents self-fertilization. In gametophytic self-incompatibility (GSI), pollen specificity is encoded by the haploid genotype of the pollen tube. In GSI, specificities are maintained by frequency-dependent selection, and for diploid species, at equilibrium, equal specificity frequencies (isoplethy) are expected. This prediction has been tested in diploid, but never in polyploid self-incompatible species. For the latter, there is no theoretical expectation regarding isoplethy. Here, we report the first empirical study on specificity frequencies in a natural population of a polyploid self-incompatible species, Prunus spinosa. A total of 32 SFB (the pollen S gene) putative specificities are observed in a large sample from a natural population. Although P. spinosa is polyploid, the number of specificities found is similar to that reported for other diploid Rosaceae species. Unequal specificity frequencies are observed.  相似文献   

9.
Self-incompatibility is an important genetic mechanism that prevents inbreeding and promotes genetic polymorphism and heterosis in flowering plants. Many fruit species in the Rosaceae, including apple, pear, plum, apricot, sweet cherry, Japanese apricot, and almond, exhibit typical gametophytic self-incompatibility (GSI) controlled by an apparently single multi-allelic locus. This locus encodes at least two components from both the pollen and the pistil, and controls recognition of self- and non-self pollen. Recently, the GSI system has been investigated at the molecular and cellular levels in Rosaceae, and findings have provided some important insights as to how these two genes interact within pollen tubes that lead to specific inhibition of germination and/or growth of self-pollen tubes. In this review, molecular features of S-determinants of both pistil and pollen, identification of S-alleles, mechanisms of self-incompatibility break-down, and evolution of S-alleles are presented. Moreover, hypothetical signal transduction models in a self-incompatible system in Rosaceae are proposed based on recent findings that indicate that several signal factors are involved in GSI responses.  相似文献   

10.
We surveyed the distribution of S-alleles in natural island populations of Prunus lannesiana var. speciosa sampled from seven sites on the Izu Peninsula and six Izu islands, Japan. The S-genotypes of sampled individuals were determined by Southern analysis of RFLPs generated by restriction enzyme digestion of genomic DNA, using cDNA of the S-RNase gene as a probe. All individuals were heterozygous, as expected under gametophytic self-incompatibility (GSI). Sixty-three S-alleles were observed in the species, but 12 private to the Izu Peninsula population seemed to be derived from related species, giving a total of 75. The estimated number of S-alleles in each population ranged from 26 to 62, and was inversely correlated with the respective population's distance from the Izu Peninsula, the closest point in the mainland to the islands. This geographical cline in the estimated numbers of S-alleles suggests that gene flow to and from the distant island populations was less frequent, and that the studied species has migrated from the mainland to the Izu islands. The genetic relationship at the S-locus among populations also gave an "isolation by distance" pattern. The genetic differentiation at the S-locus among the populations was very low (F(ST) = 0.014, p < 0.001). The number of S-alleles in the species did not seem to depend on genetic differences associated with population subdivisions. This might be due to the greater effective migration rates of S-alleles, as expected under balancing selection in GSI.  相似文献   

11.
Kato S  Mukai Y 《Heredity》2004,92(3):249-256
In the Rosaceae family, which includes Prunus, gametophytic self-incompatibility (GSI) is controlled by a single multiallelic locus (S-locus), and the S-locus product expressed in the pistils is a glycoprotein with ribonuclease activity (S-RNase). Two populations of flowering cherry (Prunus lannesiana var. speciosa), located on Hachijo Island in Japan's Izu Islands, were sampled, and S-allele diversity was surveyed based on the sequence polymorphism of S-RNase. A total of seven S-alleles were cloned and sequenced. The S-RNases of flowering cherry showed high homology to those of Prunus cultivars (P. avium and P. dulcis). In the phylogenetic tree, the S-RNases of flowering cherry and other Prunus cultivars formed a distinct group, but they did not form species-specific subgroups. The nucleotide substitution pattern in S-RNases of flowering cherry showed no excess of nonsynonymous substitutions relative to synonymous substitutions. However, the S-RNases of flowering cherry had a higher Ka/Ks ratio than those of other Prunus cultivars, and a subtle heterogeneity in the nucleotide substitution rates was observed among the Prunus species. The S-genotype of each individual was determined by Southern blotting of restriction enzyme-digested genomic DNA, using cDNA for S-RNase as a probe. A total of 22 S-alleles were identified. All individuals examined were heterozygous, as expected under GSI. The allele frequencies were, contrary to the expectation under GSI, significantly unequal. The two populations studied showed a high degree of overlap, with 18 shared alleles. However, the allele frequencies differed considerably between the two populations.  相似文献   

12.
S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8?cM corresponding to ~364?Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus?×?domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.  相似文献   

13.
The molecular bases of the gametophytic self-incompatibility (GSI) system of species of the subtribe Pyrinae (Rosaceae), such as apple and pear, have been widely studied in the last two decades. The characterization of S-locus genes and of the mechanisms underlying pollen acceptance or rejection have been topics of major interest. Besides the single pistil-side S determinant, the S-RNase, multiple related S-locus F-box genes seem to be involved in the determination of pollen S specificity. Here, we collect and review the state of the art of GSI in the Pyrinae. We emphasize recent genomic data that have contributed to unveiling the S-locus structure of the Pyrinae, and discuss their consistency with the models of self-recognition that have been proposed for Prunus and the Solanaceae. Experimental data suggest that the mechanism controlling pollen-pistil recognition specificity of the Pyrinae might fit well with the collaborative 'non-self' recognition system proposed for Petunia (Solanaceae), whereas it presents relevant differences with the mechanism exhibited by the species of the closely related genus Prunus, which uses a single evolutionarily divergent F-box gene as the pollen S determinant. The possible involvement of multiple pollen S genes in the GSI system of Pyrinae, still awaiting experimental confirmation, opens up new perspectives to our understanding of the evolution of S haplotypes, and of the evolution of S-RNase-based GSI within the Rosaceae family. Whereas S-locus genes encode the players determining self-recognition, pollen rejection in the Pyrinae seems to involve a complex cascade of downstream cellular events with significant similarities to programmed cell death.  相似文献   

14.
Although recent findings suggest that the F-box genes SFB/SLF control pollen-part S specificity in the S-RNase-based gametophytic self-incompatibility (GSI) system, how these genes operate in the system is unknown, and functional variation of pollen S genes in different species has been reported. Here, we analyzed the S locus of two species of Maloideae: apple (Malus domestica) and Japanese pear (Pyrus pyrifolia). The sequencing of a 317-kb region of the apple S9 haplotype revealed two similar F-box genes. Homologous sequences were isolated from different haplotypes of apple and Japanese pear, and they were found to be polymorphic genes derived from the S locus. Since each S haplotype contains two or three related genes, the genes were named SFBB for S locus F-box brothers. The SFBB genes are specifically expressed in pollen, and variable regions of the SFBB genes are under positive selection. In a style-specific mutant S haplotype of Japanese pear, the SFBB genes are retained. Apart from their multiplicity, SFBB genes meet the expected characteristics of pollen S. The unique multiplicity of SFBB genes as the pollen S candidate is discussed in the context of mechanistic variation in the S-RNase-based GSI system.  相似文献   

15.
Harbord RM  Napoli CA  Robbins TP 《Genetics》2000,154(3):1323-1333
In plants with a gametophytic self-incompatibility system the specificity of the pollen is determined by the haploid genotype at the self-incompatibility (S) locus. In certain crosses this can lead to the exclusion of half the gametes from the male parent carrying a particular S-allele. This leads to pronounced segregation distortion for any genetic markers that are linked to the S-locus. We have used this approach to identify T-DNA insertions carrying a maize transposable element that are linked to the S-locus of Petunia hybrida. A total of 83 T-DNA insertions were tested for segregation distortion of the selectable marker used during transformation with Agrobacterium. Segregation distortion was observed for 12 T-DNA insertions and at least 8 of these were shown to be in the same linkage group by intercrossing. This indicates that differential transmission of a single locus (S) is probably responsible for all of these examples of T-DNA segregation distortion. The identification of selectable markers in coupling with a functional S-allele will allow the preselection of recombination events around the S-locus in petunia. Our approach provides a general method for identifying transgenes that are linked to gametophytic self-incompatibility loci and provides an opportunity for transposon tagging of the petunia S-locus.  相似文献   

16.
Huang SX  Wu HQ  Li YR  Wu J  Zhang SJ  Heng W  Zhang SL 《Plant cell reports》2008,27(6):1075-1085
Self-incompatibility (SI) has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility (GSI). In the present study, four PpsS-haplotypes (Prunus pseudocerasus S-haplotypes) comprising at least two genes, i.e., PpsS-RNase (P. pseudocerasus S-RNase) and PpsSFB (P. pseudocerasus S-haplotype-specific F-box) have been successfully isolated in tetraploid P. pseudocerasus Lindl. CV. Nanjing Chuisi ("NC") which exhibited self-compatibility (SC), and its S-genotype was determined as S-1/S-3'/S-5/S-7. These PpsS-RNases, which were expressed exclusively in style, shared the typical structural features with S-RNases from other Prunus species exhibiting GSI. All PpsSFBs showed similar structure characteristics of SFBs from other Prunus species, and matched with the necessary conditions for pollen S-determinant. No mutations leading to dysfunction of S-haplotype were found in their full-length c-DNA sequences, except for PpsS-3'-haplotype which was not amplified by PCR. These four S-haplotypes complied with tetrasomic inheritance. Diploid pollen grains with S-genotypes S-7/S-1, S-7/S-5 and S-1/S-5 can grow the full length of the style after self-pollination, while pollen grains with S-3'/S-7, S-3'/S-1 and S-3'/S-5 cannot. These results suggest that PpsS-haplotypes-1, -5 and -7 are functional, and that competitive interaction between two of them confer self-compatibility on cultivar "NC". Furthermore, in terms of recognition specificity, diploid pollen grains carrying PpsS-3'-haplotype are equal to monoploid pollen grains carrying the other functional S-haplotype.  相似文献   

17.
It has been argued that the common ancestor of about 75% of all dicots possessed an S-RNase-based gametophytic self-incompatibility (GSI) system. S-RNase genes should thus be found in most plant families showing GSI. The S-RNase gene (or a duplicate) may also acquire a new function and thus genes belonging to the S-RNase lineage may also persist in plant families without GSI. Nevertheless, sequences that belong to the S-RNase lineage have been found in the Solanaceae, Scrophulariaceae, Rosaceae, Cucurbitaceae, and Fabaceae plant families only. Here we search for new sequences that may belong to the S-RNase lineage, using both a phylogenetic and a much faster and simpler amino acid pattern-based approach. We show that the two methods have an apparently similar false-negative rate of discovery (~10%). The amino acid pattern-based approach produces about 15% false positives. Genes belonging to the S-RNase lineage are found in three new plant families, namely, the Rubiaceae, Euphorbiaceae, and Malvaceae. Acquisition of a new function by genes belonging to the S-RNase lineage is shown to be a frequent event. A putative S-RNase sequence is identified in Lotus, a plant genus for which molecular studies on GSI are lacking. The hypothesis of a single origin for S-RNase-based GSI (before the split of the Asteridae and Rosidae) is further supported by the finding of genes belonging to the S-RNase lineage in some of the oldest lineages of the Asteridae and Rosidae, and by Baysean constrained tree analyses.  相似文献   

18.
配子体自交不亲和信号转导的研究进展   总被引:2,自引:0,他引:2  
蓝兴国  于晓敏  李玉花 《遗传》2005,27(4):677-685
自然界中大多数自交不亲和(self-incompatibility, SI)显花植物表现为配子体SI。配子体SI植物虽然都具有其SI的功能而阻止自我受精,但它们采取的信号转导途径是不同的。目前关于配子体SI信号转导的途径主要有两种:一是茄科、玄参科、蔷薇科中以雌蕊S-RNase为基础的信号转导途径;另一是罂粟科中以花粉管胞质自由钙离子为第二信使的转导途径。文章就配子体SI信号转导的研究进展作一综述。  相似文献   

19.
Red clover is a hermaphroditic allogamous diploid (2n = 2x = 14) with a homomorphic gametophytic self-incompatibility (GSI) system (Trifolium pratense L.). Red clover GSI has long been studied, and it is thought that the genetic control of GSI constitutes a single locus. Although GSI genes have been identified in other species, the genomic location of the red clover GSI-locus remains unknown. The objective of this study was to use a mapping-based approach to identify simple sequence repeats (SSR) that were closely linked to the GSI-locus. Previously published SSR markers were used in this effort (Sato et al. in DNA Res 12:301–364, 2005). A bi-parental cross was initiated in which the parents were known to have one self-incompatibility allele (S-allele) in common. S-allele genotypes of 100 progeny were determined through test crosses and pollen compatibility. Pseudo F1 linkage analysis isolated the GSI-locus on red clover linkage-group one within 2.5 cM of markers RCS5615, RCS0810, and RCS3161. A second 256 progeny mapping testcross population of a heterozygous self-compatible mutant revealed that this specific self-compatible mutant mapped to the same location as the GSI-locus. Finally, 82 genotypes were identified whose parents putatively shared one S-allele in common from maternal halfsib families derived from two random mating populations in which paternal identity was determined using molecular markers. Unique S-allele identity in the two random mating populations was tentatively inferred based on haplotypes of two highly allelic linkage-group one SSR (RCS0810 and RCS4956), which were closely linked to each other and the GSI-locus. Paternally derived pollen haplotype linkage analysis of RCS0810 and RCS4956 SSR and the GSI-locus again revealed tight linkage at 2.5 and 4.7 cM between the GSI-locus and RCS0810 and RCS4956, respectively. The map-based location of the GSI-locus in red clover has many immediate applications to red clover plant breeding and could be useful in helping to sequence the GSI-locus.  相似文献   

20.
Treatment of stigma with a lectin (Con A/PHA) before pollinationwas effective in overcoming self-incompatibility in Petuniahybrida, a gametophytic self-incompatible system, and Erucasativa, a sporophytic self-incompatible system. Treatment ofpollen with glucose/N-acetyl-D-galactosamine (tested only withPetunia) was also effective. These results suggest the involvementof pollen lectins and specific sugar components of the pistilin self-incompatibility recognition. Petunia hybrida, Eruca sativa, self-incompatibility, pollen recognition, lectins  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号