首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative traits are shaped by networks of pleiotropic genes . To understand the mechanisms that maintain genetic variation for quantitative traits in natural populations and to predict responses to artificial and natural selection, we must evaluate pleiotropic effects of underlying quantitative trait genes and define functional allelic variation at the level of quantitative trait nucleotides (QTNs). Catecholamines up (Catsup), which encodes a negative regulator of tyrosine hydroxylase , the rate-limiting step in the synthesis of the neurotransmitter dopamine, is a pleiotropic quantitative trait gene in Drosophila melanogaster. We used association mapping to determine whether the same or different QTNs at Catsup are associated with naturally occurring variation in multiple quantitative traits. We sequenced 169 Catsup alleles from a single population and detected 33 polymorphisms with little linkage disequilibrium (LD). Different molecular polymorphisms in Catsup are independently associated with variation in longevity, locomotor behavior, and sensory bristle number. Most of these polymorphisms are potentially functional variants in protein coding regions, have large effects, and are not common. Thus, Catsup is a pleiotropic quantitative trait gene, but individual QTNs do not have pleiotropic effects. Molecular population genetic analyses of Catsup sequences are consistent with balancing selection maintaining multiple functional polymorphisms.  相似文献   

2.
The identification of the causative genetic variants in quantitative trait loci (QTL) influencing phenotypic traits is challenging, especially in crosses between outbred strains. We have previously identified several QTL influencing tameness and aggression in a cross between two lines of wild-derived, outbred rats (Rattus norvegicus) selected for their behavior towards humans. Here, we use targeted sequence capture and massively parallel sequencing of all genes in the strongest QTL in the founder animals of the cross. We identify many novel sequence variants, several of which are potentially functionally relevant. The QTL contains several regions where either the tame or the aggressive founders contain no sequence variation, and two regions where alternative haplotypes are fixed between the founders. A re-analysis of the QTL signal showed that the causative site is likely to be fixed among the tame founder animals, but that several causative alleles may segregate among the aggressive founder animals. Using a formal test for the detection of positive selection, we find 10 putative positively selected regions, some of which are close to genes known to influence behavior. Together, these results show that the QTL is probably not caused by a single selected site, but may instead represent the joint effects of several sites that were targets of polygenic selection.  相似文献   

3.
Tuber shape in potato is commonly regarded as displaying continuous variation, yet at the diploid level phenotypes can be discerned visually, having round or long tubers. Inheritance of qualitative tuber shape can be explained by a single locus Ro, round being dominant to long. With restriction fragment length polymorphisms (RFLPs) the Ro locus was mapped on chromosome 10. Tuber shape was also studied as a quantitative trait, using the length/width ratio as trait value. The estimated broad sense heritability was h(2) = 0.80. The morphologically mapped Ro locus explained 75% of the genetic variation, indicating the presence of a major quantitative trait locus (QTL) at the Ro locus and minor genetic factors. RFLP alleles linked with Ro alleles were used to divide the progeny into four genotypic classes: Ro( &) Ro( &) : Ro( &) ro : roRo( &) : roro = 1 : 1 : 1 : 1. The recessive ro allele is identical by descent in both parents. The significantly different effects (P = 0.0157) of the non-identical alleles Ro( &) and Ro( &) provided evidence for multiallelism at the Ro locus. Linkage mapping of the Ro locus was compared with QTL mapping. Only those markers which are polymorphic in both parents allow accurate QTL mapping when genetic factors segregate from both parents. This finding applies to QTL mapping in all outbreeders without homozygous inbred strains.  相似文献   

4.
Yalcin B  Flint J  Mott R 《Genetics》2005,171(2):673-681
We have developed a fast and economical strategy for dissecting the genetic architecture of quantitative trait loci at a molecular level. The method uses two pieces of information: mapping data from crosses that involve more than two inbred strains and sequence variants in the progenitor strains within the interval containing a quantitative trait locus (QTL). By testing whether the strain distribution pattern in the progenitor strains is consistent with the observed genetic effect of the QTL we can assign a probability that any sequence variant is a quantitative trait nucleotide (QTN). It is not necessary to genotype the animals except at a skeleton of markers; the genotypes at all other polymorphisms are estimated by a multipoint analysis. We apply the method to a 4.8-Mb region on mouse chromosome 1 that contains a QTL influencing anxiety segregating in a heterogeneous stock and show that, under the assumption that a single QTN is present and lies in a region conserved between the human and mouse genomes, it is possible to reduce the number of variants likely to be the quantitative trait nucleotide from many thousands to <20.  相似文献   

5.
Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.  相似文献   

6.
Until recently, it was impracticable to identify the genes that are responsible for variation in continuous traits, or to directly observe the effects of their different alleles. Now, the abundance of genetic markers has made it possible to identify quantitative trait loci (QTL)--the regions of a chromosome or, ideally, individual sequence variants that are responsible for trait variation. What kind of QTL do we expect to find and what can our observations of QTL tell us about how organisms evolve? The key to understanding the evolutionary significance of QTL is to understand the nature of inherited variation, not in the immediate mechanistic sense of how genes influence phenotype, but, rather, to know what evolutionary forces maintain genetic variability.  相似文献   

7.

Background

For decades, research efforts have tried to uncover the underlying genetic basis of human susceptibility to a variety of diseases. Linkage studies have resulted in highly replicated findings and helped identify quantitative trait loci (QTL) for many complex traits; however identification of specific alleles accounting for linkage remains elusive. The purpose of this study was to determine whether with a sufficient number of variants a linkage signal can be fully explained.

Method

We used comprehensive fine-mapping using a dense set of single nucleotide polymorphisms (SNPs) across the entire quantitative trait locus (QTL) on human chromosome 7q36 linked to plasma triglyceride levels. Analyses included measured genotype and combined linkage association analyses.

Results

Screening this linkage region, we found an over representation of nominally significant associations in five genes (MLL3, DPP6, PAXIP1, HTR5A, INSIG1). However, no single genetic variant was sufficient to account for the linkage. On the other hand, multiple variants capturing the variation in these five genes did account for the linkage at this locus. Permutation analyses suggested that this reduction in LOD score was unlikely to have occurred by chance (p = 0.008).

Discussion

With recent findings, it has become clear that most complex traits are influenced by a large number of genetic variants each contributing only a small percentage to the overall phenotype. We found that with a sufficient number of variants, the linkage can be fully explained. The results from this analysis suggest that perhaps the failure to identify causal variants for linkage peaks may be due to multiple variants under the linkage peak with small individual effect, rather than a single variant of large effect.  相似文献   

8.
Understanding the genetic architecture of quantitative traits begins with identifying the genes regulating these traits, mapping the subset of genetically varying quantitative trait loci (QTLs) in natural populations, and pinpointing the molecular polymorphisms defining QTL alleles. Studies in Drosophila have revealed large numbers of pleiotropic genes that interact epistatically to regulate quantitative traits, and large numbers of QTLs with sex-, environment- and genotype-specific effects. Multiple molecular polymorphisms in regulatory regions of candidate genes are often associated with variation for complex traits. These observations offer valuable lessons for understanding the genetic basis of variation for complex traits in other organisms, including humans.  相似文献   

9.
10.
Localization of human quantitative trait loci (QTLs) is now routine. However, identifying their functional DNA variants is still a formidable challenge. We present a complete dissection of a human QTL using novel statistical techniques to infer the most likely functional polymorphisms of a QTL that influence plasma levels of clotting factor VII (FVII), a risk factor for cardiovascular disease. Resequencing of 15 kb in and around the F7 gene identified 49 polymorphisms, which were then genotyped in 398 people. Using a Bayesian quantitative trait nucleotide (BQTN) method, we identified four to seven functional variants that completely account for this QTL. These variants include both rare coding variants and more common, potentially regulatory polymorphisms in intronic and promoter regions.  相似文献   

11.
PURPOSE OF REVIEW: Recently, genome-wide genetic screening of common DNA sequence variants has proven a successful approach to identify novel genetic contributors to complex traits. This review summarizes recent genome-wide association studies for lipid phenotypes, and evaluates the next steps needed to obtain a full picture of genotype-phenotype correlation and apply these findings to inform clinical practice. RECENT FINDINGS: So far, genome-wide association studies have defined at least 19 genomic regions that contain common DNA single nucleotide polymorphisms associated with LDL cholesterol, HDL cholesterol and/or triglycerides. Of these, eight represent novel loci in humans, whereas 11 genes have been previously implicated in lipoprotein metabolism. Many of the same loci with common variants have already been shown to lead to monogenic lipid disorders in humans and/or mice, suggesting that a spectrum of common and rare alleles at each validated locus contributes to blood lipid concentrations. SUMMARY: At least 19 loci harbor common variations that contribute to blood lipid concentrations in humans. Larger scale genome-wide association studies should identify additional loci, and sequencing of these loci should pinpoint all relevant alleles. With a full catalog of DNA polymorphisms in hand, a panel of lipid-related variants can be studied to provide clinical risk stratification and targeting of therapeutic interventions.  相似文献   

12.
Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence‐based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome‐wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans‐acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans‐acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low‐recombining pericentromeric regions of chromosomes.  相似文献   

13.
The leptin receptor gene (LEPR) is a candidate for traits related to growth and body composition, and is located on SSC6 in a region where fatness and meat composition quantitative trait loci (QTL) have previously been detected in several F2 experimental designs. The aims of this work were: (i) to fine map these QTL on a larger sample of animals and generations (F3 and backcross) of an Iberian x Landrace intercross and (ii) to examine the effects of LEPR alleles on body composition traits. Eleven single nucleotide polymorphisms (SNPs) were detected by sequencing LEPR coding regions in Iberian and Landrace pig samples. Three missense polymorphisms were genotyped by pyrosequencing in 33 F0, 70 F1, 418 F2, 86 F3 and 128 individuals coming from the backcross of four F2 males with 24 Landrace females. Thirteen microsatellites and one SNP were also genotyped. Traits analysed were: backfat thickness at different locations (BF(T)), intramuscular fat percentage (IMF(P)), eye muscle area (EM(A)), loin depth (LO(D)), weight of shoulder (SH(W)), weight of ribs (RIB(W)) and weight of belly bacon (BB(W)). Different statistical models were applied in order to evaluate the number and effects of QTL on chromosome 6 and the possible causality of the LEPR gene variants with respect to the QTL. The results support the presence of two QTL on SSC6. One, at position 60-100 cM, affects BF(T) and RIB(W). The other and more significant maps in a narrow region (130-132 cM) and affects BF(T), IMF(P), EM(A), LO(D), SH(W), RIB(W) and BB(W). Results also support the association between LEPR alleles and BF(T) traits. The possible functional implications of the analysed polymorphisms are considered.  相似文献   

14.
qLTG3-1 is a major quantitative trait locus (QTL) controlling tolerance to low-temperature at the seed germination stage (termed low-temperature germinability) in rice using a population derived from the cross between Italica Livorno from Italy and Hayamasari from Japan. Map-based cloning identified that qLTG3-1 encodes a protein of unknown function. The molecular identification of this major QTL could make it possible to identify allelic variation and favorable alleles for rice breeding programs. The present study examined the identification of qLTG3-1 alleles and their distribution among 62 landraces of Asian cultivated rice (Oryza sativa L.) collected from 19 different countries, termed the rice core collection. In the coding region, a single non-synonymous substitution and 3 in-frame insertion/deletion polymorphisms (indels) were detected. The almost completely conserved protein alignment of qLTG3-1 was also identified among 5 Oryza species, suggesting that the function of qLTG3-1 is critical for seed germination or for rice growth by pleiotropic effects of the gene. The functional nucleotide polymorphisms (FNPs), a 71-bp deletion found in Hayamasari and an amino acid substitution found in Nipponbare, was identified in varieties from Japan. These alleles with FNPs might be adapted to rice cultivation in specific local conditions. The present results may contribute to the utilization of favorable alleles of qLTG3-1 for the improvement of low-temperature germinability in rice breeding programs.  相似文献   

15.
Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS) components (obesity, dyslipidemia, and diabetes-related traits). MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL) in an F16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; n = 1002). Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs) between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine.  相似文献   

16.
Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.  相似文献   

17.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   

18.
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.  相似文献   

19.
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs.  相似文献   

20.
The coefficient of relationship is defined as the correlation between the additive genetic values of two individuals. This coefficient can be defined specifically for a single quantitative trait locus (QTL) and may deviate considerably from the overall expectation if it is taken conditional on information from linked marker loci. Conditional halfsib correlations are derived under a simple genetic model with a biallelic QTL linked to a biallelic marker locus. The conditional relationship coefficients are shown to depend on the recombination rate between the marker and the QTL and the population frequency of the marker alleles, but not on parameters of the QTL, i.e. number and frequency of QTL alleles, degree of dominance etc., nor on the (usually unknown) QTL genotype of the sire. Extensions to less simplified cases (multiple alleles at the marker locus and the QTL, two marker loci flanking the QTL) are given. For arbitrary pedigrees, conditional relationship coefficients can also be derived from the conditional gametic covariance matrix suggested by Fernando and Grossman (1989). The connection of these two approaches is discussed. The conditional relationship coefficient can be used for marker-assisted genetic evaluation as well as for the detection of QTL and the estimation of their effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号