首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goya RG  Brown OA  Pléau JM  Dardenne M 《Peptides》2004,25(1):139-142
Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. It consists of a nonapeptide component coupled to the ion zinc, which confers biological activity to this molecule. After its discovery in the early 1970, thymulin was characterized as a thymic hormone involved in several aspects of intra- and extrathymic T-cell differentiation. Subsequently, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, an emerging core of information points to thymulin as a hypophysotropic peptide. Here we review the evidence supporting the hypothesis that thymulin is an important player in the hypophyso-thymic axis.  相似文献   

2.
Plasma concentrations of a zinc carrier peptide, namely thymulin, were measured according to a bioassay in young donors, healthy elderly, and patients with senile dementia of Alzheimer’s type (SDAT). Thymulin is a hormone released by thymic epithelial cells and its biological activity on cells of immune system is dependent on the presence of one molecule of zinc bound to the peptide. Plasma from different subjects were fractionated by gel filtration to yield protein-bound thymulin and free thymulin. The biological activity of the peptide was then assessed in the two different fractions. The activity of protein-bound thymulin was higher in young donors than in elderly of SDAT patients, being the lowest in SDAT. Addition of zinc ions to plasma fractions increased the thymulin activity of samples from elderly and SDAT patients to levels observed in young donors. Thymulin activity in free thymulin fractions was lower in the elderly than in the young and was practically undetectable in SDAT patients. The addition of zinc ions normalized the activity of thymulin in these fractions from both the elderly and SDAT patients. These findings confirm the presence of an altered zinc status in the elderly and suggest that an impaired zinc metabolism may be present in SDAT patients.  相似文献   

3.
Summary Thymulin, a thymic hormone, is a nonapeptide requiring zinc for biological activity. It has been shown that epithelial cells, forming part of the thymic reticulum, secrete this hormone and/or store it within cytoplasmic vacuoles. X-ray electron-probe microanalysis (EPMA) has been used to detect zinc in the thymus. Low concentrations of zinc have been demonstrated in the dense granules contained in clear vacuoles of some epithelial cells in normal and ZnCl2-injected mouse thymuses, thus suggesting that the metal may be coupled to the peptide before the secretion of the hormone from the cells.  相似文献   

4.
The integrity of the thymus during early life is necessary for a proper maturation of the neuroendocrine system, including the adrenal axis. The thymic metallopeptide thymulin seems to be a central physiologic mediator of thymus-pituitary communication. Furthermore, neonatal thymulin gene therapy has been shown to prevent the typical alterations of gonadotrophic cell number and morphology and serum gonadotropin levels in nude female mice. In the present study we assessed the impact of athymia and the effect of neonatal thymulin gene therapy on the corticotropic cell population in nude mice. The effect of thymulin administration to adult nudes on their hypothalamic content of corticotropin-releasing hormone (CRH) and the adrenal content of corticosterone was also determined. We used an adenoviral vector expressing a synthetic gene for the thymic peptide thymulin (metFTS) termed RAd-FTS. On postnatal day 1 or 2, heterozygous (nu/+) and homozygous (nu/nu) pups of both sexes received a single bilateral i.m. injection of RAd-FTS or RAd-GFP, a control vector. On postnatal day 71, mice were bled and sacrificed, and their pituitaries were immediately dissected, fixed and immunostained for corticotropin. Morphometry was performed by means of an image-analysis system. The following parameters were calculated: volume density (VD: Σ cell area/reference area), cell density (CD: number of cells/reference area), and cell surface (CS: expressed in μm2). Serum thymulin levels were measured by a bioassay, and CRH as well as corticosterone were determined by IRMA and RIA, respectively. Neonatal thymulin gene therapy in the athymic mice restored their serum thymulin levels and increased corticotrope CD, VD and CS in both control and athymic mice. Athymic mice showed only a marginal reduction in corticotrope CD, VD and CS. In these mutants hypothalamic CRH content was slightly increased, whereas adrenal corticosterone tended to be lower. Thymulin administration to adult mice tended to reverse these changes. Our results suggest a possible modulating effect of thymulin on the corticotrope population and the adrenal gland, confirming the existence of a bidirectional thymus-pituitary-adrenal axis.  相似文献   

5.
The production of thymulin by the thymic epithelium is under complex control involving the endocrine system. Experimental models have suggested that prolactin (PRL) and growth hormone (GH) participate in this regulation but this has not been documented in humans. Using a bioassay we measured circulating thymulin levels in patients with hyperprolactinemia (n = 21), acromegaly (n = 15), or both (n = 6). Thymulin was elevated in these three groups of patients compared with normal subjects or with patients with pituitary disease but no excess in PRL or GH. Contrasting with observations in control groups, thymulin did not decrease as a function of age in patients. No correlation between thymulin and PRL or GH levels was observed while thymulin and insulin-like growth factor 1 levels were correlated. A new radioimmunoassay used in some patients for thymulin determination yielded similar results. Overall these data demonstrate that PRL and GH are involved in the hormonal control of thymulin production by the thymic epithelium in the human.  相似文献   

6.
The distribution of thymulin (FTS-Zn) was studied in thymuses from normal mice (OF1) or autoimmune mice (NZB). Thymulin localization was investigated using immunocytochemical techniques on sections of GMA and epon-embedded mouse thymuses. Two monoclonal antibodies were used: anti-synthetic thymulin and anti-intracellular thymulin. In the immunofluorescence assay, GMA sections allowed a more subtle localization of thymulin in the cytoplasm of epithelial cells (with a vacuolar pattern) compared to the epon sections (with a homogeneous fluorescence in the cytoplasm). In both cases, the number of labeled cells was greater in the medullary region than in the cortex of the thymus. At the electron microscopic level, immunolabeling of epon ultrathin sections showed ferritin distributed in some of the epithelial cell vacuoles. The two monoclonal antibodies revealed similar distributions of thymulin in the thymus. The results obtained in this study confirm that the amount of thymulin is greater in the epithelial cells of normal compared to autoimmune thymuses.  相似文献   

7.
Using an immunofluorescence (IF) assay, the presence of metallothionein (MT) was investigated in sections of normal and pathologic human thymuses as well as in cultures of thymic epithelial cells. This protein, known to have a high binding affinity for class II B transitional metals, such as zinc, was detected in the epithelial component of the thymus. Moreover, double labeling experiments with the anti-MT and an anti-thymulin monoclonal antibody showed that all cells containing thymulin, a thymic hormone whose active structure is known to contain zinc, also exhibited large amounts of metallothionein. These results, together with the fact that zinc and thymulin have been detected in the same type of cell organelles, lead to the conclusion that the MT present in thymic epithelial cells might be involved in the mechanism of zinc storage in these cells, thus favoring the secretion of thymulin in its biologically active, zinc-containing form.  相似文献   

8.
The distribution of thymulin (FTS-Zn) was studied in thymuses from normal mice (OF1) or autoimmune mice (NZB). Thymulin localization was investigated using immunocytochemical techniques on sections of GMA and epon-embedded mouse thymuses. Two monoclonal antibodies were used: anti-synthetic thymulin and anti-intracellular thymulin. In the immunofluorescence assay, GMA sections allowed a more subtle localization of thymulin in the cytoplasm of epithelial cells (with a vacuolar pattern) compared to the epon sections (with a homogeneous fluorescence in the cytoplasm). In both cases, the number of labeled cells was greater in the medullary region than in the cortex of the thymus. At the electron microscopic level, immunolabeling of epon ultrathin sections showed ferritin distributed in some of the epithelial cell vacuoles. The two monoclonal antibodies revealed similar distributions of thymulin in the thymus. The results obtained in this study confirm that the amount of thymulin is greater in the epithelial cells of normal compared to autoimmune thymuses.  相似文献   

9.
A monoclonal antibody specific for thymulin (FTS), a thymic hormone initially isolated from serum, was obtained by cell fusion using spleen cells from BALB/c mice immunized with cultured human thymic epithelial cells. Hybridomas were selected according to their capacity to produce antibodies binding specifically to thymic epithelial cells in culture (as assessed by indirect immunofluorescence) and their ability to absorb in vitro the biological activity of synthetic and natural hormone preparations and to induce in vivo the disappearance of endogenous circulating thymulin. In this way monoclonal antibodies were obtained that recognized a subpopulation of nonlymphoid cells on frozen sections of mouse and human thymuses. The epithelial nature of these cells was assessed using an antikeratin antiserum. The binding of the antibodies to thymic cells was completely abolished by its absorption with the synthetic hormone or normal (but not of thymectomized) mouse serum. The thymic specificity of the antibody was further confirmed by the complete absence of binding to sections of all the various lymphoid and epithelial organs examined (from both humans and mice). Double labeling experiments using the monoclonal antibody described above and a monoclonal antibody prepared by immunization with the synthetic peptide showed that the two antibodies bound to the same cell. These results provide further evidence for the exclusive presence of the thymic hormone thymulin in thymic epithelial cells.  相似文献   

10.
Influence of growth hormone on thymic endocrine activity in humans   总被引:1,自引:0,他引:1  
The thymus produces humoral factors that induce the proliferation and differentiation of T cells which are responsible for cell-mediated immunity. Experimental data have suggested that this thymic hormone production is modulated by the neuroendocrine network and, in particular, by growth hormone (GH) and thyroid hormones. To study the role played by GH in thymic endocrine activity in humans, the circulating level of one of the best known thymic peptides, i.e. thymulin (Zn-FTS), has been determined, after a washout period of 2 weeks without GH treatment, in GH-deficient children before and after a single injection of GH. The basal thymulin level is consistently lower in GH-deficient children than in healthy age-matched controls. A single injection of GH induces a significant increment of the thymulin level for at least 48 h. Since thymulin activity may also depend on zinc bioavailability, on thyroid hormone turnover and on the eventual presence of thymulin-inhibitory substances, all these aspects have been checked. No supporting evidence regarding the existence of these kinds of interferences in GH-deficient children has been substantiated. A positive correlation has been found between the serum level of insulin-like growth factor I, but not of GH, and thymulin activity. These data suggest that GH may directly or indirectly modulate the thymic endocrine function in humans. Whether and to what extent such a modulation is relevant to the functioning of the immune system remains to be ascertained.  相似文献   

11.
The influence of adrenals and gonads on the intrathymic production and the circulating level of thymulin was evaluated in young adult mice. Adrenalectomy (Adx) and gonadectomy (Cx) induce a temporary decrease of thymulin serum level. One simultaneously notes, as a compensatory phenomenon, an increase in the thymic content of the hormone-producing cells. The decrease of serum thymulin levels after Adx and Cx is at least partially due to the appearance of low m.w. thymulin-inhibitory molecules. The fact that thymectomy prevents the appearance of these inhibitors suggests that the effects of Adx and Cx could be explained by a negative control by sex hormones of the synthesis or activity of thymulin inhibitors produced or controlled by the thymus. Specific hormone replacement therapy of castrated/adrenalectomized animals normalized thymulin serum level and thymic content. Such correction was also spontaneously observed after 4 mo, suggesting that other mechanisms (e.g., an influence of the hypothalamus-hypophysis axis) might be involved in the endocrine control of thymic hormone secretion.  相似文献   

12.
Various thymic peptides (including thymulin, thymic humoral factor, thymopoietin, etc.) play important roles in the process of T cell maturation and development. We isolated a new peptide from calf thymus and named it thymus activity factor II (TAF-II). A yield of 0.92 mg of TAF-II was purified from 500 g calf thymus. Analysis by LC/MSD-Trap showed the amino acid sequence of this hexapeptide to be Glu-Ala-Lys-Ser-Gln-Gly-OH with molecular weight 618.5 daltons. We have also begun to investigate the influence of TAF-II.  相似文献   

13.
The immunomodulatory potential of thymulin in the perinatal epithelium is not well characterized. In an in vitro model of fetal alveolar type II epithelial cells, we investigated the exhibition of an anti-inflammatory activity of this peptide hormone. Thymulin selectively ameliorated, in a dose-dependent manner, the endotoxin-induced release of IL-1 beta (IC(50) = 657 ng. ml(-1)), but showed no inhibitory effect on IL-6 and TNF-alpha. Zinc, an anti-inflammatory antioxidant, which is required for the biological activity of thymulin, reduced the secretion of IL-1 beta (IC(50) = 62 microM), TNF-alpha (IC(50) = 1000 microM), and, to a lesser extent, IL-6. This cation (100 microM) amplified the effect of thymulin on IL-1 beta and TNF-alpha (IC(50) < 0.1 ng. ml(-1)), but not on IL-6. Analysis of whether thymulin is up-regulating a counterpart anti-inflammatory signaling loop revealed the involvement of an IL-10-sensitive pathway. These results indicate that thymulin acts as a novel dual immunoregulator by enhancing an anti-inflammatory cytoprotective response and depressing an inflammatory signal, an effect synergistically amplified, in part, by cationic zinc.  相似文献   

14.
We investigated the in vitro effects (kinetics and dose-response) of adrenal and sexual steroid hormones on the secretion of thymulin, a thymic hormone, by human thymic epithelial cells in primary cultures as well as in a rat epithelial cell line. We demonstrated that all steroids tested, in a range of physiological doses, stimulated thymulin production to various extents. Progesterone and estradiol, however, were revealed to be the most efficient. Specific steroid antagonists abrogated the steroid-induced stimulation of thymulin production. These findings confirm our previous in vivo results and demonstrate that steroid hormones can act directly on thymic epithelial cells to modulate their endocrine production.  相似文献   

15.
The thymic stroma plays a critical role in the generation of T lymphocytes by direct cell-to-cell contacts as well as by secreting growth factors or hormones. The thymic epithelial cells, responsible for thymic hormone secretion, include morphologically and antigenically distinct subpopulations that may exert different roles in thymocyte maturation. The recent development of thymic epithelial cell lines provided an interesting model for studying thymic epithelial influences on T cell differentiation. Treating mouse thymocytes by supernatants from one of TEC line (IT-76M1), we observed an induction of thymocyte proliferation and an increase in the percentages of CD4-/CD8- thymocytes. This proliferation was largely inhibited when thymocytes were incubated with IT-76M1 supernatants together with an anti-thymulin monoclonal antibody, but could be enhanced by pretreating growing epithelial cells by triiodothyronine. We suggest that among the target cells for thymulin within the thymus, some putative precursors of early phenotype might be included.  相似文献   

16.
Primary cell cultures and organ fragments of rat thymus were characterised by use of a panel of antibodies raised against the neural adhesion molecule L1, tyrosine hydroxylase, protein gene product 9.5, nerve growth factor, calcitonin gene-related peptide, glial fibrillary acidic protein, vimentin, pan-cytokeratin, a ganglioside of neural crest and neuroendocrine cells (A2B5), and thymulin (4 beta). Immunoreactivity for neural markers only was identified in a single morphology (nerve-like) of cell in culture and throughout the adult thymus as fine, tortuous staining. Immunoreactivity for endocrine markers only was identified in polygonal epithelial-like cells in culture, throughout viable tissue in fragment culture and in the subcapsular cortex of the adult thymus. Immunoreactivity for both endocrine and neural markers was identified in three distinct morphologies in cell culture: elongate, spherical, and stellate. Similar results were observed in the mitotic periphery of the cultured fragments and in the medulla and cortico-medullary junction of the adult thymus. Cells with immunoreactivity to A2B5 were present in primary and fragment cultures and occurred throughout the adult thymus. The apparent diversity of cell immunoreactivity in primary and fragment thymic cultures suggests that numerous neural and endocrine factors may be required for the development and/or regeneration of the thymic microenvironment.  相似文献   

17.
Integrity of the thymus during perinatal life is necessary for a proper maturation of the pituitary-gonadal axis in mice and other mammalian species. Thus congenitally athymic (nude) female mice show significantly reduced levels of circulating gonadotropins, a fact that seems to be causally related to a number of reproductive derangements described in these mutants. Interestingly, a number of in vitro studies suggest that the thymic peptide thymulin may be involved in thymus-pituitary communication. To determine the consequences of low serum thymulin in otherwise normal animals, we induced short (8 days)- and long (33 days)-term thymulin deficiency in C57BL/6 mice by neonatally injecting (intraperitoneally) an anti-thymulin serum and assessed their circulating gonadotropin levels at puberty and thereafter. Control mice received an irrelevant antiserum. Gonadotropins were measured by radioimmunoassay and thymulin by bioassay. Both long- and short-term serum thymulin immunoneutralization resulted in a significant reduction in the serum levels of gonadotropins at 33 and 45 days of age. Subsequently, we injected (intramuscularly) an adenoviral vector harboring a synthetic DNA sequence (5'-ATGCAAGCCAAATCTCAAGGTGGATCCAACTAGTAG-3') encoding a biologically active analog of thymulin, methionine-FTS, in newborn nude mice (which are thymulin deficient) and measured circulating gonadotropin levels when the animals reached 52 days of age. It was observed that neonatal thymulin gene therapy in the athymic mice restored their serum thymulin levels and prevented the reduction in circulating gonadotropin levels that typically emerges in these mutants after puberty. Our results indicate that thymulin plays a relevant physiological role in the thymus-pituitary-gonadal axis.  相似文献   

18.
T-cell ontogenesis has been disclosed to depend on the interactions of thymus with endocrine glands and nervous system as follows: i/ Thymic deprivation not only impaired the immunological development but also brought about the dysgenesis of pituitary anterior lobe. Conversely, hypophysectomy resulted in thymus atrophy with the disturbed immune responses. ii/ Binding of pituitary acidophilic cell hormones to their receptors on thymus epithelial cells (TECs) augmented the release of thymic hormonal peptides (THPs) in vitro. iii/ Elevation of blood glucocorticoid level after stress caused atrophy of thymus cortex through double positive thymocyte apoptosis. Morpho-molecular alterations of cytoplasm preceded nuclear damage in the apoptotic thymocytes. iv/ Administration of thymosin to the streptozotocin-induced diabetic mice repressed mononuclear cell infiltration to the pancreatic islets. v/ Autonomic nerve fibers innervate thymic parenchyma. Binding of acetylcholines (Achs) to Ach receptors on TECs enhanced protein synthetic activity which seemed to connect with THP production. vi/ Thymectomy not only depressed the immune responses but also accelerated the reduction of leaming and memory ability with aging. The operation appears to disturb the brain adrenoceptor functions and to suppress the regulatory roles of hypothalamus to other nervous tissues. vii/ Several kinds of THPs, separated from the culture supernatant of TEC line by high performance liquid chromatography, showed a favorable effect on the thymocytes at different stage of differentiation and maturation. viii/ Thymosin, thymulin and THPs were capable of proliferating and differentiating thymocytes in vitro. However, the administration of each thymic product to the thymus-deprived animals could not restore from their "wasting disease". Since TECs are composed of a heterogeneous population, it would be one of essential ways for isolating "true thymus hormone" (TTH) to use the material which consists of functionally homogeneous subset of TECs. ix/ An additional grafting of pituitary gland to the thymus-grafted nude mice improved the disturbed T-cell ontogeny. Accordingly, the administration of "TTH" and pituitary acidophilic cell hormones might be more hopeful procedure for rescuing the thymus-deprived animals from "wasting disease".  相似文献   

19.
A new method for the long-term culture of pure rat thymic epithelial cells was established. The cultures were characterized by immunocytochemistry, electron microscopy and proliferation assays. Non-epithelial thymic cells were eliminated with a reliable and reproducible pre-plating method, by differential trypsin treatment of the cultures and by addition of horse serum to the culture medium instead of fetal calf serum. The final cultures contained more than 95% pure epithelial cells as evidenced by immunostaining for cytokeratin. Ultrastructural studies indicated that these cells are physiologically active epithelial cells with tonofilaments, desmosomes and filopods. The subsets of the thymic epithelial cells in vitro were investigated by comparing their staining pattern with that obtained in situ using several subtype-selective antibodies. Thymic epithelial cells in vitro showed a preferential expression of subcapsular/perivascular and medullary markers. Only few cultivated cells were of cortical origin. In the first to the fourth subcultures, some cells were immunopositive for the thymus hormone/factor thymulin. The proliferation of thymic epithelial cells was stimulated by horse serum and to a lesser extend by fetal calf serum. The adenylate cyclase activators isoproterenol and forskolin, and the glucocorticoid cortisol inhibited the proliferation. Received: 12 May 1995 / Accepted: 13 October 1995  相似文献   

20.
The intracellular pathway for secretion of thymulin, a thymic hormone, was studied in primary cultures of human thymic epithelial cells by experimentally blocking the movement of secretory vesicles within these cells. These cultures were subjected to cytoskeleton inhibitors, such as colchicine and/or cytochalasin B, that block the directed movement of secretory vesicles, or to monensin, an ionophore that specifically perturbs the traffic of Golgi-derived vesicles. Both cytoskeleton inhibitors partially prevented thymulin secretion into the culture supernatants, and their effects were dose-dependent. Moreover, the percentage of thymulin-containing cells (evaluated by immunofluorescence with a zinc-specific anti-thymulin monoclonal antibody), as well as the fluorescence intensity within these cells, was significantly higher than observed in control cultures, suggesting that the hormone was accumulated in the cytoplasm, thus facilitating its detection. Similar results were obtained with monensin. These results, together with the recent identification of high molecular weight proteins reacting with anti-thymulin antibodies, suggest that thymulin is secreted via the following intracellular pathway: a precursor is synthesized at the level of the granular endoplasmic reticulum; it migrates to the Golgi complex, from which it is released within hormone-containing vesicles; the vesicles incorporate zinc, move towards the cell membrane, and eventually fuse with it. This sequence of events characterizes the classical phenomenon of exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号