首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multigene family encoding the five classes of replication-dependent histones has been identified from the human and mouse genome sequence. The large cluster of histone genes, HIST1, on human chromosome 6 (6p21-p22) contains 55 histone genes, and Hist1 on mouse chromosome 13 contains 51 histone genes. There are two smaller clusters on human chromosome 1: HIST2 (at 1q21), which contains six genes, and HIST3 (at 1q42), which contains three histone genes. Orthologous Hist2 and Hist3 clusters are present on mouse chromosomes 3 and 11, respectively. The organization of the human and mouse histone genes in the HIST1 cluster is essentially identical. All of the histone H1 genes are in HIST1, which is spread over about 2 Mb. There are two large gaps (>250 kb each) within this cluster where there are no histone genes, but many other genes. Each of the histone genes encodes an mRNA that ends in a stemloop followed by a purine-rich region that is complementary to the 5' end of U7 snRNA. In addition to the histone genes on these clusters, only two other genes containing the stem-loop sequence were identified, a histone H4 gene on human chromosome 12 (mouse chromosome 6) and the previously described H2a.X gene located on human chromosome 11. Each of the 14 histone H4 genes encodes the same protein, and there are only three histone H3 proteins encoded by the 12 histone H3 genes in each species. In contrast, both the mouse and human H2a and H2b proteins consist of at least 10 non-allelic variants, making the complexity of the histone protein complement significantly greater than previously thought.  相似文献   

2.
Histones are highly basic, relatively small proteins that complex with DNA to form higher order structures that underlie chromosome topology. Of the four core histones H2A, H2B, H3 and H4, it is H3 that is most heavily modified at the post-translational level. The human genome harbours 16 annotated bona fide histone H3 genes which code for four H3 protein variants. In 2010, two novel histone H3.3 protein variants were reported, carrying over twenty amino acid substitutions. Nevertheless, they appear to be incorporated into chromatin. Interestingly, these new H3 genes are located on human chromosome 5 in a repetitive region that harbours an additional five H3 pseudogenes, but no other core histone ORFs. In addition, a human-specific novel putative histone H3.3 variant located at 12p11.21 was reported in 2011. These developments raised the question as to how many more human histone H3 ORFs there may be. Using homology searches, we detected 41 histone H3 pseudogenes in the current human genome assembly. The large majority are derived from the H3.3 gene H3F3A, and three of those may code for yet more histone H3.3 protein variants. We also identified one extra intact H3.2-type variant ORF in the vicinity of the canonical HIST2 gene cluster at chromosome 1p21.2. RNA polymerase II occupancy data revealed heterogeneity in H3 gene expression in human cell lines. None of the novel H3 genes were significantly occupied by RNA polymerase II in the data sets at hand, however. We discuss the implications of these recent developments.  相似文献   

3.
Nucleosomes reconstituted from bacterially expressed histones are useful for functional and structural analyses of histone variants, histone mutants, and histone post-translational modifications. In the present study, we developed a new method for the expression and purification of recombinant human histones. The human histone H2A, H2B, and H3 genes were expressed well in Escherichia coli cells, but the human histone H4 gene was poorly expressed. Therefore, we designed a new histone H4 gene with codons optimized for the E. coli expression system and constructed the H4 gene by chemically synthesized oligodeoxyribonucleotides. The recombinant human histones were expressed as hexahistidine-tagged proteins and were purified by one-step chromatography with nickel-nitrilotriacetic acid agarose in the presence of 6 M urea. The H2A/H2B dimer and the H3/H4 tetramer were refolded by dialysis against buffer without urea, and the hexahistidine-tags of the histones in the H2A/H2B dimer and the H3/H4 tetramer were removed by thrombin protease digestion. The H2A/H2B dimer and the H3/H4 tetramer obtained by this method were confirmed to be proficient in nucleosome formation by the salt dialysis method. The human CENP-A gene, the centromere-specific histone H3 variant, contains 28 minor codons for E. coli. A new CENP-A gene optimized for the E. coli expression system was also constructed, and we found that the purified recombinant CENP-A protein formed a nucleosome-like structure with histones H2A, H2B, and H4.  相似文献   

4.
5.
Histone proteins contain epigenetic information that is encoded both in the relative abundance of core histones and variants and particularly in the post-translational modification of these proteins. We determined the presence of such variants and covalent modifications in seven tissue types of the anuran Xenopus laevis, including oocyte, egg, sperm, early embryo equivalent (pronuclei incubated in egg extract), S3 neurula cells, A6 kidney cells, and erythrocytes. We first developed a new robust method for isolating the stored, predeposition histones from oocytes and eggs via chromatography on heparin-Sepharose, whereas we isolated chromatinized histones via conventional acid extraction. We identified two previously unknown H1 isoforms (H1fx and H1B.Sp) present on sperm chromatin. We immunoblotted this global collection of histones with many specific post-translational modification antibodies, including antibodies against methylated histone H3 on Lys(4), Lys(9), Lys(27), Lys(79), Arg(2), Arg(17), and Arg(26); methylated histone H4 on Lys(20); methylated H2A and H4 on Arg(3); acetylated H4 on Lys(5), Lys(8), Lys(12), and Lys(16) and H3 on Lys(9) and Lys(14); and phosphorylated H3 on Ser(10) and H2A/H4 on Ser(1). Furthermore, we subjected a subset of these histones to two-dimensional gel analysis and subsequent immunoblotting and mass spectrometry to determine the global remodeling of histone modifications that occurs as development proceeds. Overall, our observations suggest that each metazoan cell type may have a unique histone modification signature correlated with its differentiation status.  相似文献   

6.
An online metal-free weak cation exchange-hydrophilic interaction LC/RPLC system has been developed for sensitive, high-throughput top-down MS. Here, we report results for analyzing PTMs of core histones, with a focus on histone H4, using this system. With just ~24?μg on-column of core histones (H4, H2B, H2A, and H3) purified from human fibroblasts, 41 H4 isoforms were identified, with the type and location of PTMs unambiguously mapped for 20 of these variants. Compared to corresponding offline studies reported previously, the online weak cation exchange-hydrophilic interaction LC/RPLC platform offers significant improvement in sensitivity, with several orders of magnitude reduction in sample requirements and a reduction in the overall analysis time. To the best of our knowledge, this study represents the first online 2-D LC-MS/MS characterization of core histone mixture at the intact protein level.  相似文献   

7.
Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.  相似文献   

8.
9.
已知组蛋白变异体在基因转录调控、DNA修复以及凋亡等过程中起着重要作用。但组蛋白变异体在细胞衰老中的作用尚不清楚。本研究证明,组蛋白变异体HIST2H2BE可上调p 21的表达,影响细胞的衰老进程。基因芯片、半定量RT-PCR以及Real-time PCR揭示,HIST2H2BE在衰老细胞中表达升高,且其表达具有衰老特异性。在年轻成纤维细胞中过表达HIST2H2BE,可显著减少EdU掺入细胞的百分率,升高细胞衰老标志物SA-β-gal活性以及p 21的表达,提示HIST2H2BE具有细胞衰老调节作用。此外,利用siRNA抑制p 21表达,可明显衰减HIST2H2BE活化SA-β-gal。以上结果显示,组蛋白变异体HIST2H2BE是一个重要的衰老调节蛋白质,其对细胞衰老的调节依赖于p 21。该研究结果为深入探讨染色质结构改变在细胞衰老中的作用提供了新线索。  相似文献   

10.
Replication-dependent histones are encoded by multigene families found in several large clusters in the human genome and are thought to be functionally redundant. However, the abundance of specific replication-dependent isoforms of histone H2A is altered in patients with chronic lymphocytic leukemia. Similar changes in the abundance of H2A isoforms are also associated with the proliferation and tumorigenicity of bladder cancer cells. To determine whether these H2A isoforms can perform distinct functions, expression of several H2A isoforms was reduced by siRNA knockdown. Reduced expression of the HIST1H2AC locus leads to increased rates of cell proliferation and tumorigenicity. We also observe that regulation of replication-dependent histone H2A expression can occur on a gene-specific level. Specific replication-dependent histone H2A genes are either up- or downregulated in chronic lymphocytic leukemia tumor tissue samples. In addition, discreet elements are identified in the 5′ untranslated region of the HIST1H2AC locus that confer translational repression. Taken together, these results indicate that replication-dependent histone isoforms can possess distinct cellular functions and that regulation of these isoforms may play a role in carcinogenesis.  相似文献   

11.
The nucleosome, the fundamental structural unit of chromatin, contains an octamer of core histones H3, H4, H2A, and H2B. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function, analysis of histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2A and H2B variants derived from Jurkat cells. A combination of mass spectrometric techniques, HPLC separations, and enzymatic digestions using endoproteinase Glu-C, endoproteinase Arg-C, and trypsin were used to identify histone H2A and H2B subtypes and their modifications. We identified nine histone H2A and 11 histone H2B subtypes, among them proteins that only had been postulated at the gene level. The two main H2A variants, H2AO and H2AC, as well as H2AL were either acetylated at Lys-5 or phosphorylated at Ser-1. For the replacement histone H2AZ, acetylation at Lys-4 and Lys-7 was found. The main histone H2B variant, H2BA, was acetylated at Lys-12, -15, and -20. The analysis of core histone subtypes with their modifications provides a first step toward an understanding of the functional significance of the diversity of histone structures.  相似文献   

12.
Here we describe the use of reverse-phase liquid chromatography mass spectrometry (RPLC-MS) to simultaneously characterize variants and post-translationally modified isoforms for each histone. The analysis of intact proteins significantly reduces the time of sample preparation and simplifies data interpretation. LC-MS analysis and peptide mass mapping have previously been applied to identify histone proteins and to characterize their post-translational modifications. However, these studies provided limited characterization of both linker histones and core histones. The current LC-MS analysis allows for the simultaneous observation of all histone PTMs and variants (both replacement and bulk histones) without further enrichment, which will be valuable in comparative studies. Protein identities were verified by the analysis of histone H2A species using RPLC fractionation, AU-PAGE separation and nano-LC-MS/MS.  相似文献   

13.
14.
Posttranslational modifications of histones are involved in regulation of chromatin structure and gene activity. Whereas the modifications of the core histones H2A, H2B, H3, and H4 have been extensively studied, our knowledge of H1 modifications remained mainly limited to its phosphorylation. Here we analyzed the composition of histone H1 variants and their modifications in two human cell lines and nine mouse tissues. Use of a hybrid linear ion trap-orbitrap mass spectrometer facilitated assignment of modifications by high resolution and low ppm mass accuracy for both the precursor and product mass spectra. Across different tissues we identified a range of phosphorylation, acetylation, and methylation sites. We also mapped sites of ubiquitination and report identification of formylated lysine residues. Interestingly many of the mapped modifications are located within the globular domain of the histones at sites that are thought to be involved in binding to nucleosomal DNA. Investigation of mouse tissue in addition to cell lines uncovered a number of interesting differences. For example, whereas methylation sites are frequent in tissues, this type of modification was much less abundant in cultured cells and escaped detection. Our study significantly extends the known spectrum of linker histone variability.  相似文献   

15.
In eukaryotic cell nuclei, DNA associates with the core histones H2A, H2B, H3 and H4 to form nucleosomal core particles. DNA binding to histones is regulated by posttranslational modifications of N-terminal tails (e.g., acetylation and methylation of histones). These modifications play important roles in the epigenetic control of chromatin structure. Recently, evidence that biotinidase and holocarboxylase synthetase (HCS) catalyze the covalent binding of biotin to histones has been provided. The primary aim of this study was to identify biotinylation sites in histone H2A and its variant H2AX. Secondary aims were to determine whether acetylation and methylation of histone H2A affect subsequent biotinylation and whether biotinidase and HCS localize to the nucleus in human cells. Biotinylation sites were identified using synthetic peptides as substrates for biotinidase. These studies provided evidence that K9 and K13 in the N-terminus of human histones H2A and H2AX are targets for biotinylation and that K125, K127 and K129 in the C-terminus of histone H2A are targets for biotinylation. Biotinylation of lysine residues was decreased by acetylation of adjacent lysines but was increased by dimethylation of adjacent arginines. The existence of biotinylated histone H2A in vivo was confirmed by using modification-specific antibodies. Antibodies to biotinidase and HCS localized primarily to the nuclear compartment, consistent with a role for these enzymes in regulating chromatin structure. Collectively, these studies have identified five novel biotinylation sites in human histones; histone H2A is unique among histones in that its biotinylation sites include amino acid residues from the C-terminus.  相似文献   

16.
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells.  相似文献   

17.
The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G1, S, and G2/M. For all core histones, the modifications in the G1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G2/M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G2/M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G2/M, H3 Lys27 and Lys36 were decreased, whereas H4 Lys20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.  相似文献   

18.
The effects of a heat shock or arsenite treatment on the methylation and acetylation of core histones have been investigated in Drosophila cultured cells. The decrease in H3 methylation, which is observed during a heat shock, is not a demethylation process, but results from methylation arrest. Two-dimensional gel electrophoresis leaves no ambiguity concerning the identity of H2B as a methylated protein, since H2B and D2, a nuclear nonhistone protein, which comigrate on one-dimensional gels, are well separated on these gels. Two-dimensional gel electrophoresis in the presence of Triton X-100 resolves each of the core histones into multiple forms resulting from posttranslational modifications. There are apparently, however, no histone variants in cultured Drosophila cells. At 23 degrees C, the various forms of the core histones resolved on two-dimensional gels are methylated. Under heat-shock or arsenite treatment, the methylation of all forms of H3 is decreased, while that of the various forms of H2B increase. These stress conditions also induce a generalized diminution in the acetylation of all forms of core histones. In the course of a heat shock, the synthesis of H2B is increased and this newly synthesized histone remains unacetylated during the shock. These changes in the patterns of core histone methylation and acetylation may be correlated with the reorganization of gene activity brought about by the heat shock.  相似文献   

19.
Bioorthogonal chemical reporters are useful tools for visualizing and identifying post-translational modifications on proteins. Here we report the proteomic analysis of mammalian proteins targeted by a series of fatty acid chemical reporters ranging from myristic to stearic acid. The large-scale analysis of total cell lysates from fully solubilized Jurkat T cells identified known fatty-acylated proteins and many new candidates, including nuclear proteins and in particular histone H3 variants. We demonstrate that histones H3.1, H3.2, and H3.3 are modified with fatty acid chemical reporters and identify the conserved cysteine 110 as a new site of S-acylation on histone H3.2. This newly discovered modification of histone H3 could have implications for nuclear organization and chromatin regulation. The unbiased proteomic analysis of fatty-acylated proteins using chemical reporters has revealed a greater diversity of lipid-modified proteins in mammalian cells and identified a novel post-translational modification of histones.  相似文献   

20.
Human sperm, unlike the sperm of other mammals, contain replacement histones with unknown biological functions. Here, we report the identification of the novel human gene coding for a testis/sperm-specific histone H2B (hTSH2B). This variant histone is 85% homologous to somatic H2B and has over 93% homology with the testis H2B of rodents. Using genomic PCR, two genetic alleles of hTSH2B were found in the human population. The hTSH2B gene is transcribed exclusively in testis, and the corresponding protein is also present in mature sperm. We expressed recombinant hTSH2B and identified this protein with a particular H2B subtype expressed in vivo. The subnuclear distribution of H2B variants in sperm was determined using biochemical fractionation and immunoblotting. The H2B variant associated with telomere-binding activity () was solubilized by Triton X-100 or micrococcal nuclease extraction, whereas hTSH2B was relatively tightly bound in nuclei. Immunofluorescence showed that hTSH2B was concentrated in spots located at the basal nuclear area of a subpopulation (20% of cells) of mature sperm. This fact may be of particular importance, because the hTSH2B "positive" and "negative" sperm cells may undergo significantly different decondensation processes following fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号