首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dose dependencies of growth and cytogenetic values have been built to determine that the critical level of root apical meristem damage induced by cute irradiation within the range from 2 to 20 Gy. Causal relationships between frequency of chromosome aberrations and death of tissue, organ, and organism have been analyzed. The critical level of damage in the stem apical meristem and root of seedlings was defined as 44–48% of aberrant anaphase. The exceeding of this level results in launch of a suicidal program in the meristem through induction of multiaberrant damages and interphase cell death. It is assumed that cell competition between clones of nonaberrant, aberrant with single damages, and multiaberrant cells plays an important role in mechanisms of recovery. The exceeding of a 50% level of aberrations results in total or partial recovery of root apical meristem by regeneration. Approximately 70% of chromosome aberrations are the critical index of root apical meristem damage which still allow its regeneration. However, these local regeneration processes are insufficient for recovery of morphogenesis and survival of seedlings.  相似文献   

2.
The dose dependencies of the aberrant anaphases frequency in the root meristem in 48 hours after irradiation in the range of doses of 4-10 Gy is characterized by threshold and plateau at 33% aberrant anaphase. The plateau indicates the activation of the recovery processes. Topology of cell rows in the primary meristem of the dose to 8 Gy are conserved and recovered damages. New cell rows are formed by local cell pools in the distal meristem, pericycle cells and subepidermy. It grows by intrusive character displacing the rows of damaged cells. Apparently the competition between clones of normal and aberrant cells plays the primary role in the mechanisms of recovery. Resulting to competition the promotion of aberrant cells to the extension zone is slowed down or blocked. So critical level of damage of the root apical meristem was defined about 50% of aberrant anaphase. Exceeding of this level leads to lethal consequence for meristem and it is accompanied by the inclusion of more radical process of restoration through regeneration. Regeneration leads to complete replacement of the apex tissues including the extension zone.  相似文献   

3.
An indeterminate developmental program allows plant organs to grow continuously by maintaining functional meristems over time. The molecular mechanisms involved in the maintenance of the root apical meristem are not completely understood. We have identified a new Arabidopsis thaliana mutant named moots koom 1 (mko1) that showed complete root apical meristem exhaustion of the primary root by 9?days post-germination. MKO1 is essential for maintenance of root cell proliferation. In the mutant, cell division is uncoupled from cell growth in the region corresponding to the root apical meristem. We established the sequence of cellular events that lead to meristem exhaustion in this mutant. Interestingly, the SCR and WOX5 promoters were active in the mko1 quiescent center at all developmental stages. However, during meristem exhaustion, the mutant root tip showed defects in starch accumulation in the columella and changes in auxin response pattern. Therefore, contrary to many described mutants, the determinate growth in mko1 seedlings does not appear to be a consequence of incorrect establishment or affected maintenance of the quiescent center but rather of cell proliferation defects both in stem cell niche and in the rest of the apical meristem. Our results support a model whereby the MKO1 gene plays an important role in the maintenance of the root apical meristem proliferative capacity and indeterminate root growth, which apparently acts independently of the SCR/SHR and WOX5 regulatory pathways.  相似文献   

4.
The regeneration ability, cell division activity, auxin and cytokinin content of seedling regions and hypocotyl subsections of Watsonia lepida were studied. A total of 21 different cytokinins or conjugates were found in seedlings, with the highest cytokinin content in meristematic regions (root and shoot apical meristems). The greatest contribution to the cytokinin pool came from the biologically inactive cZRMP, suggesting that significant de novo synthesis was occurring. Five different auxins or conjugates were detected, being concentrated largely in the shoot apical meristem and leaves, IAA being the most abundant. Analysis of hypocotyl subsections (C1–C4) revealed that cell division was highest in subsection C2, although regeneration in vitro was significantly lower than in subsection C1. Anatomically, subsection C1 contains the apical meristem, and hence has meristematic cells that are developmentally plastic. In contrast, subsection C2 has cells that have recently exited the meristem and are differentiating. Despite high rates of cell division, cells in subsection C2 appear no longer able to respond to cues that promote proliferation in vitro. Auxin and cytokinin analyses of these subsections were conducted. Possibly, a lower overall cytokinin content, and in particular the free-base cytokinins, could account for this observed difference.  相似文献   

5.
In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.  相似文献   

6.
BACKGROUND AND AIMS: Electric fields are an important environmental factor that can influence the development of plants organs. Such a field can either inhibit or stimulate root growth, and may also affect the direction of growth. Many developmental processes directly or indirectly depend upon the activity of the root apical meristem (RAM). The aim of this work was to examine the effects of a weak electric field on the organization of the RAM. METHODS: Roots of Zea mays seedlings, grown in liquid medium, were exposed to DC electric fields of different strengths from 0.5 to 1.5 V cm(-1), with a frequency of 50 Hz, for 3 h. The roots were sampled for anatomical observation immediately after the treatment, and after 24 and 48 h of further undisturbed growth. KEY RESULTS: DC fields of 1 and 1.5 V cm(-1) resulted in noticeable changes in the cellular pattern of the RAM. The electric field activated the quiescent centre (QC): the cells of the QC penetrated the root cap junction, disturbing the organization of the closed meristem and changing it temporarily into the open type. CONCLUSIONS: Even a weak electric field disturbs the pattern of cell divisions in plant root meristem. This in turn changes the global organization of the RAM. A field of slightly higher strength also damages root cap initials, terminating their division.  相似文献   

7.
The dose dependences of the frequency of chromosome aberrations in root meristems of pea germinants after their 48-h irradiation in a dose range from 4 to 8 Gy is nonlinear. The plateau of the curve indicates the activation of recovery processes. With the dose rise, the meristem size decreases, while the frequency of cellular inactivation, clustering disorders, and deformations of cell rows in the meristem and extension zone increase. However, the topology of cell rows at the 33% level of aberrations is mostly maintained. Conservation and recovery of the topology of cell rows are performed through repopulation and substitution of damaged cells and rows on its basis. The growth character of new cell rows in damaged tissue is intrusive. The promotion of aberrant cells to the extension zone is slowed down or blocked by the interruption of symplastic growth. In new cellular subpopulations, chromosome mutagenesis continues, and the effectiveness of recovery processes is in many respects defined by the competition between normal and aberrant cells and also their clones. The limits of the recovery potential of root apex are restricted by “critical mass” of the proliferating pool and the degree of damage to the extension zone. At a level of 50%, aberrant anatelophases meristem recovery triggers a more radical mechanism through regeneration, which leads to the complete substitution of apex tissues, including the extension zone.  相似文献   

8.
9.
The effects of wheat germ agglutinin (WGA) and phytohemagglutinin (PHA) at the concentration of 1 mg/l on the rate of cell division in the root apical meristem of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) seedlings were compared. WGA enhanced cell division in the roots of barley and rice approximately similarly as in wheat roots but did not affect division of meristematic cells in the roots of common bean seedlings. In contrast PGA enhanced mitotic activity in the root apical meristem of common bean seedlings but did not affect division in the wheat and barley roots. Seedling treatment with lectins shifted the hormonal balance in them toward accumulation of growth activators (IAA and cytokinins). The relationship between lectin and hormonal systems in the control of cell division is discussed.  相似文献   

10.
Yano K  Suzuki T  Moriyasu Y 《Autophagy》2007,3(4):360-362
In previous studies, using a membrane-permeable protease inhibitor, E-64d, we showed that autophagy occurs constitutively in the root cells of barley and Arabidopsis. In the present study, a fusion protein composed of the autophagy-related protein AtAtg8 and green fluorescent protein (GFP) was expressed in Arabidopsis to visualize autophagosomes. We first confirmed the presence of autophagosomes with GFP fluorescence in the root cells of seedlings grown on a nutrient-sufficient medium. The number of autophagosomes changed as the root cells grew and differentiated. In cells near the apical meristem, autophagosomes were scarcely found. However, a small but significant number of autophagosomes existed in the elongation zone. More autophagosomes were found in the differentiation zone where cell growth ceases but the cells start to form root hair. In addition, we confirmed that autophagy is activated under starvation conditions in Arabidopsis root cells. When the root tips were cultured in a sucrose-free medium, the number of autophagosomes increased in the elongation and differentiation zones, and a significant number of autophagosomes appeared in cells near the apical meristem. The results suggest that autophagy in plant root cells is involved not only in nutrient recycling under nutrient-limiting conditions but also in cell growth and root hair formation.  相似文献   

11.
12.
1,8-cineole is a volatile growth inhibitor produced bySalvia species. We examined the effect of this allelopathic compound on the growth of other plants usingBrassica campestris as the test plant. Cineole inhibited germination and growth ofB. campestris in a dosedependent manner. WhenB. campestris was grown for 5 days with various concentrations of cineole, the length of the roots was found to be shorter as the concentration of cineole increased, whereas the length of the hypocotyl remained constant up to 400 μM cineole, indicating that cineole specifically inhibited growth of the root. The mitotic index in the root apical meristem of 3-day-old seedlings decreased from 5.6% to 1.6% when exposed to 400 μM cineole, showing that cineole inhibits the proliferation of root cells. We then examined the effect of cineole on DNA synthesis by indirect immunofluorescence microscopy using antibody raised against 5-bromo-2′-deoxyuridine (BrdU, an analogue of thymidine) in thin sections of samples embedded in Technovit 7100 resin. The results clearly demonstrated that cineole inhibits DNA synthesis in both cell nuclei and organelles in root apical meristem, suggesting that cineole may interfere with the growth of other plant species by inhibiting DNA synthesis in the root apical meristem.  相似文献   

13.
Cell populations of the apical root parts, stem embryo and the leaf of barley seedlings are found to have different sensitivity to the synchronizing effect of 5-aminouracil, low temperature (+2 degrees C) and colchicine. The effect of 5-aminouracil and low temperature in the presence of colchicine proved to be the most effective in respect to synchronization of the root meristem cell populations. It also increases significantly the mitotic activity in the stem embryo and leaf meristems. The leaf meristem is more sensitive to low temperature as compared to the stem embryo meristem.  相似文献   

14.
Experimental data were obtained that in pea seedlings modified by decapitation of main root had increased radioresistance (radioadaptation), fixed by various parameters of growth activity of lateral roots, and decreased ability to repair sublethal damages, detected by method of acute gamma-irradiation dose fractionation. These facts both with enlargement of dose dependence shoulder in lateral roots of decapitated seedlings led to conclusion that main role in such mechanism of radioadaptation effect of decapitation belongs to supercellular processes such as repopulation and regeneration. Conclusion was confirmed by the additional comparative investigations of cyto- and histological parameters of apical meristems of intact (control) and decapitated (experiment) lateral roots. It was shown, that the decapitated seedlings had increased mitotic activity of apical meristems of lateral roots and total volume of their meristematic zone. So at the moment of application of irradiation in the test-dose decapitated variant had significantly more meristematic cells of certain size that allowed biological object to form necessary (critical) amount of elements for valid or more complete postradiation recovery.  相似文献   

15.
Lead disturbs microtubule organization in the root meristem of Zea mays   总被引:5,自引:0,他引:5  
Lead is an environmental pollutant that interferes with plant growth. Unfortunately, the mechanisms of lead toxicity in plants are still poorly understood. In this study, we have investigated both the deposition sites and sources of cellular toxicity of lead in maize seedlings ( Zea mays L. cv. Golden Cross Bantam). Using atomic absorption spectroscopy and X-ray fluorescence microprobing, we show that lead accumulation is highest in the root meristem, and that the accumulation occurs both in the apoplast and symplast. Since cells are dividing vigorously in this region and because microtubules play an important role in cell division, we have further examined the effects of lead on microtubules in the root meristem. Lead treatment perturbed the alignment of microtubules in a concentration-dependent manner beginning at 10 μ M . Microtubules of different regions of the root meristem and in different stages of the cell cycle showed differential susceptibility to lead. These effects do not appear to be general phenomena common to toxic metals, since aluminum and copper, at concentrations that decreased root growth to a comparable level, did not have the same detrimental effects on microtubules. Based on these results, we suggest that the damage to microtubules is partly responsible for lead-associated toxicity in plants.  相似文献   

16.
In Arabidopsis embryogenesis, the primary root meristem originates from descendants of both the apical and the basal daughter cell of the zygote. We have isolated a mutant of a new gene named BODENLOS (BDL) in which the primary root meristem is not formed whereas post-embryonic roots develop and bdl seedlings give rise to fertile adult plants. Some bdl seedlings lacked not only the root but also the hypocotyl, thus resembling monopteros (mp) seedlings. In addition, bdl seedlings were insensitive to the auxin analogue 2,4-D, as determined by comparison with auxin resistant1 (axr1) seedlings. bdl embryos deviated from normal development as early as the two-cell stage at which the apical daughter cell of the zygote had divided horizontally instead of vertically. Subsequently, the uppermost derivative of the basal daughter cell, which is normally destined to become the hypophysis, divided abnormally and failed to generate the quiescent centre of the root meristem and the central root cap. We also analysed double mutants. bdl mp embryos closely resembled the two single mutants, bdl and mp, at early stages, while bdl mp seedlings essentially consisted of hypocotyl but did form primary leaves. bdl axr1 embryos approached the mp phenotype at later stages, and bdl axr1 seedlings resembled mp seedlings. Our results suggest that BDL is involved in auxin-mediated processes of apical-basal patterning in the Arabidopsis embryo.  相似文献   

17.
The mechanisms of the maintenance of long-term cell proliferation and its cessation in the meristem of the growing root were analyzed. Quiescent center (QC) remains in the meristem for a long time, whereas all other cells leave the meristem after several mitotic cycles. The question arises as to what extent such organization of proliferation corresponds to the concept of stem cells elaborated for animals. The definition of animal stem cells is met by the QC cells rather than by actively dividing cells that boundary it. However, QC is not a self-maintaining population of cells originated during early stages of embryogenesis; it is formed from dividing cells in the main or lateral root. After root decapitation, the QC can arise from the cells that normally would leave the meristem before long. There is a zone of the meristem whose cells are capable of remaining and forming QC after the removal of the apical part of the root. Maintenance of the size of the meristem depends on the interaction between QC, initial cells located at its surface, and the actively dividing cells. Apparently, the life span of cells in the meristem determines the time when the meristematic cell will begin the elongation. The number of cells starting the elongation depends on proliferation rate and on the changes in life span of meristematic cells which determine their initial number. The life span of the cells in the meristem for most actively dividing cells does not depend on the cell divisions, and remains unchanged in the presence of various inhibitors. As a result of inhibited proliferation in the main part of the meristem, cell divisions in the QC are activated and newly formed cells may proceed to rapid divisions. Thus, the size of the meristem is maintained by the operation of several mechanisms, and individual processes may be, on the one hand, relatively independent and, on the other hand, regulated either by feedback or directly. As a result, the root growth becomes resistant to various external events.  相似文献   

18.
Perhaps the most amazing feature of plants is their ability to grow and regenerate for years, sometimes even centuries. This fascinating characteristic is achieved thanks to the activity of stem cells, which reside in the shoot and root apical meristems. Stem cells function as a reserve of undifferentiated cells to replace organs and sustain postembryonic plant growth. To maintain meristem function, stem cells have to generate new cells at a rate similar to that of cells leaving the meristem and differentiating, thus achieving a balance between cell division and cell differentiation. Recent findings have improved our knowledge on the molecular mechanisms necessary to establish this balance and reveal a fundamental signaling role for the plant hormone cytokinin. Evidence has been provided to show that in the root meristem cytokinin acts in defined developmental domains to control cell differentiation rate, thus controlling root meristem size.  相似文献   

19.
Zinc (Zn) distribution over tissues and organs of maize (Zea mays L.) seedlings and its action on root growth, cell division, and cell elongation were studied. Two-day-old seedlings were incubated in the 0.25-strength Hoagland solution containing 2 or 475 μM Zn(NO3)2. Zn toxicity was assessed after the inhibition of primary root increment during the first and second days of incubation. The content of Zn was determined by atomic absorption spectrometry in the apical (the first centimeter from the root tip) and basal (the third centimeter from the kernel) root parts. Zn distribution in various tissues was studied by histochemical methods, using a metallochromic indicator zincon and fluorescent indicator Zinpyr-1 and light and confocal scanning fluorescent light microscopy, respectively. To evaluate Zn effects on growth processes, the average length of the meristem; the length of fully elongated cells; the number of meristematic cells in the cortex row; and duration of the cell cycle were measured. When the Zn concentration in the solution was high, the Zn content per weight unit was higher in the basal root part due to its accumulation in lateral root primordial. Zn was also accumulated in both the meristem apoplast and cell protoplasts. In the basal and middle root parts, Zn was detected essentially in all tissues predominantly in the apoplast. Zn inhibited both cell division and elongation. Under Zn influence, the size of the meristem and the number of meristematic cells decreased, which was determined by an increase in the cell cycle duration. The length of the fully elongated cells was also reduced. A comparison of Zn distribution and growth-suppressing activity with other heavy metals studied earlier allows a conclusion that toxic action of heavy metals is mainly determined by physical and chemical properties of their ions and specific patterns of their transport and distribution. As a result, two basic processes determining root growth, e.g., cell division and elongation, could be affected differently.  相似文献   

20.
Effect of pretreatment with 28 nM wheat germ agglutinin (WGA) on cell divisions in the root apical meristem of 4-day-old seedlings of wheat (Triticum aestivum L.), distribution of cells among mitotic phases, cadmium-induced disruptions of normal progression through mitosis, and activity of nucleolar organizer regions (NOR) of the chromosomes was studied after 7-h-long exposure to 1 mM cadmium acetate. Pretreatment with WGA has a pronounced protective effect on divisions of root meristem cells exposed to cadmium. Progression of the cells through mitotic phases was normalized, abnormal mitoses became much less numerous, and the share of binuclear cells decreased. Activity of NOR remained at the control level that much depended on the ability of WGA to prevent reduction in cytokinin content under cadmium stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号