首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In sub-Saharan Africa, Plasmodium falciparum and hepatitis A (HAV) infections are common, especially in children. Co-infections with these two pathogens may therefore occur, but it is unknown if temporal clustering exists.

Materials and Methods

We studied the pattern of co-infection of P. falciparum malaria and acute HAV in Kenyan children under the age of 5 years in a cohort of children presenting with uncomplicated P. falciparum malaria. HAV status was determined during a 3-month follow-up period.

Discussion

Among 222 cases of uncomplicated malaria, 10 patients were anti-HAV IgM positive. The incidence of HAV infections during P. falciparum malaria was 1.7 (95% CI 0.81–3.1) infections/person-year while the cumulative incidence of HAV over the 3-month follow-up period was 0.27 (95% CI 0.14–0.50) infections/person-year. Children with or without HAV co-infections had similar mean P. falciparum asexual parasite densities at presentation (31,000/µL vs. 34,000/µL, respectively), largely exceeding the pyrogenic threshold of 2,500 parasites/µL in this population and minimizing risk of over-diagnosis of malaria as an explanation.

Conclusion

The observed temporal association between acute HAV and P. falciparum malaria suggests that co-infections of these two hepatotrophic human pathogens may result from changes in host susceptibility. Testing this hypothesis will require larger prospective studies.  相似文献   

2.

Background

Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria.

Methods

A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories.

Results

Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition.

Conclusion

Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.  相似文献   

3.

Background

The asexual blood stages of the human malaria parasite Plasmodium falciparum produce highly immunogenic polymorphic antigens that are expressed on the surface of the host cell. In contrast, few studies have examined the surface of the gametocyte-infected erythrocyte.

Methodology/Principal Findings

We used flow cytometry to detect antibodies recognising the surface of live cultured erythrocytes infected with gametocytes of P. falciparum strain 3D7 in the plasma of 200 Gambian children. The majority of children had been identified as carrying gametocytes after treatment for malaria, and each donated blood for mosquito-feeding experiments. None of the plasma recognised the surface of erythrocytes infected with developmental stages of gametocytes (I–IV), but 66 of 194 (34.0%) plasma contained IgG that recognised the surface of erythrocytes infected with mature (stage V) gametocytes. Thirty-four (17.0%) of 200 plasma tested recognised erythrocytes infected with trophozoites and schizonts, but there was no association with recognition of the surface of gametocyte-infected erythrocytes (odds ratio 1.08, 95% C.I. 0.434–2.57; P = 0.851). Plasma antibodies with the ability to recognise gametocyte surface antigens (GSA) were associated with the presence of antibodies that recognise the gamete antigen Pfs 230, but not Pfs48/45. Antibodies recognising GSA were associated with donors having lower gametocyte densities 4 weeks after antimalarial treatment.

Conclusions/Significance

We provide evidence that GSA are distinct from antigens detected on the surface of asexual 3D7 parasites. Our findings suggest a novel strategy for the development of transmission-blocking vaccines.  相似文献   

4.

Background

Novel diagnostic tools, including PCR and high field gradient magnetic fractionation (HFGMF), have improved detection of asexual Plasmodium falciparum parasites and especially infectious gametocytes in human blood. These techniques indicate a significant number of people carry gametocyte densities that fall below the conventional threshold of detection achieved by standard light microscopy (LM).

Methodology/Principal Findings

To determine how low-level gametocytemia may affect transmission in present large-scale efforts for P. falciparum control in endemic areas, we developed a refinement of the classical Ross-Macdonald model of malaria transmission by introducing multiple infective compartments to model the potential impact of highly prevalent, low gametocytaemic reservoirs in the population. Models were calibrated using field-based data and several numerical experiments were conducted to assess the effect of high and low gametocytemia on P. falciparum transmission and control. Special consideration was given to the impact of long-lasting insecticide-treated bed nets (LLIN), presently considered the most efficient way to prevent transmission, and particularly LLIN coverage similar to goals targeted by the Roll Back Malaria and Global Fund malaria control campaigns.Our analyses indicate that models which include only moderate-to-high gametocytemia (detectable by LM) predict finite eradication times after LLIN introduction. Models that include a low gametocytemia reservoir (requiring PCR or HFGMF detection) predict much more stable, persistent transmission. Our modeled outcomes result in significantly different estimates for the level and duration of control needed to achieve malaria elimination if submicroscopic gametocytes are included.

Conclusions/Significance

It will be very important to complement current methods of surveillance with enhanced diagnostic techniques to detect asexual parasites and gametocytes to more accurately plan, monitor and guide malaria control programs aimed at eliminating malaria.  相似文献   

5.

Background

Malaria control programs require a detailed understanding of the contemporary spatial distribution of infection risk to efficiently allocate resources. We used model based geostatistics (MBG) techniques to generate a contemporary map of Plasmodium falciparum malaria risk in Indonesia in 2010.

Methods

Plasmodium falciparum Annual Parasite Incidence (PfAPI) data (2006–2008) were used to map limits of P. falciparum transmission. A total of 2,581 community blood surveys of P. falciparum parasite rate (PfPR) were identified (1985–2009). After quality control, 2,516 were included into a national database of age-standardized 2–10 year old PfPR data (PfPR2–10) for endemicity mapping. A Bayesian MBG procedure was used to create a predicted surface of PfPR2–10 endemicity with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population count surface.

Results

We estimate 132.8 million people in Indonesia, lived at risk of P. falciparum transmission in 2010. Of these, 70.3% inhabited areas of unstable transmission and 29.7% in stable transmission. Among those exposed to stable risk, the vast majority were at low risk (93.39%) with the reminder at intermediate (6.6%) and high risk (0.01%). More people in western Indonesia lived in unstable rather than stable transmission zones. In contrast, fewer people in eastern Indonesia lived in unstable versus stable transmission areas.

Conclusion

While further feasibility assessments will be required, the immediate prospects for sustained control are good across much of the archipelago and medium term plans to transition to the pre-elimination phase are not unrealistic for P. falciparum. Endemicity in areas of Papua will clearly present the greatest challenge. This P. falciparum endemicity map allows malaria control agencies and their partners to comprehensively assess the region-specific prospects for reaching pre-elimination, monitor and evaluate the effectiveness of future strategies against this 2010 baseline and ultimately improve their evidence-based malaria control strategies.  相似文献   

6.

Background

Biomarkers of exposure to Plasmodium falciparum would be a useful tool for the assessment of malaria burden and analysis of intervention and epidemiological studies. Antibodies to pre-erythrocytic antigens represent potential surrogates of exposure.

Methods and Findings

In an outbreak cohort of U.S. Marines deployed to Liberia, we modeled pre- and post-deployment IgG against P. falciparum sporozoites by immunofluorescence antibody test, and both IgG and IgM against the P. falciparum circumsporozoite protein by enzyme-linked immunosorbant assay. Modeling seroconversion thresholds by a fixed ratio, linear regression or nonlinear regression produced sensitivity for identification of exposed U.S. Marines between 58–70% and specificities between 87–97%, compared with malaria-naïve U.S. volunteers. Exposure was predicted in 30–45% of the cohort.

Conclusion

Each of the three models tested has merits in different studies, but further development and validation in endemic populations is required. Overall, these models provide support for an antibody-based surrogate marker of exposure to malaria.  相似文献   

7.

Background

Epidemiologic data on malaria are scant in many high-burden countries including the Democratic Republic of the Congo (DRC), which suffers the second-highest global burden of malaria. Malaria control efforts in regions with challenging infrastructure require reproducible and efficient surveillance. We employed new high-throughput molecular testing to characterize the state of malaria control in the DRC and estimate childhood mortality attributable to excess malaria transmission.

Methods and Findings

The Demographic and Health Survey was a cross-sectional, population-based cluster household survey of adults aged 15–59 years in 2007 employing structured questionnaires and dried blood spot collection. Parasitemia was detected by real-time PCR, and survey responses measured adoption of malaria control measures and under-5 health indices. The response rate was 99% at the household level, and 8,886 households were surveyed in 300 clusters; from 8,838 respondents molecular results were available. The overall prevalence of parasitemia was 33.5% (95% confidence interval [C.I.] 32–34.9); P. falciparum was the most prevalent species, either as monoinfection (90.4%; 95% C.I. 88.8–92.1) or combined with P. malariae (4.9%; 95% C.I. 3.7–5.9) or P. ovale (0.6%; 95% C.I. 0.1–0.9). Only 7.7% (95% CI 6.8–8.6) of households with children under 5 owned an insecticide-treated bednet (ITN), and only 6.8% (95% CI 6.1–7.5) of under-fives slept under an ITN the preceding night. The overall under-5 mortality rate was 147 deaths per 1,000 live births (95% C.I. 141–153) and between clusters was associated with increased P. falciparum prevalence; based on the population attributable fraction, 26,488 yearly under-5 deaths were attributable to excess malaria transmission.

Conclusions

Adult P. falciparum prevalence is substantial in the DRC and is associated with under-5 mortality. Molecular testing offers a new, generalizable, and efficient approach to characterizing malaria endemicity in underserved countries.  相似文献   

8.

Background

Following the 1971 ban of DDT in Bangladesh, malaria cases have increased steadily. Malaria persists as a major health problem in the thirteen south-eastern and north-eastern districts of Bangladesh. At present the national malaria control program, largely supported by the Global Fund for AIDS, Tuberculosis and Malaria (GFATM), provides interventions including advocacy at community level, Insecticide Treated Net (ITN) distribution, introduction of Rapid Diagnostic Tests (RDT) and combination therapy with Coartem. It is imperative, therefore, that baseline data on malaria prevalence and other malaria indicators are collected to assess the effectiveness of the interventions and rationalize the prevention and control efforts. The objective of this study was to obtain this baseline on the prevalence of malaria and bed net use in the thirteen malaria endemic districts of Bangladesh.

Methods and Principal Findings

In 2007, BRAC and ICDDR,B carried out a malaria prevalence survey in thirteen malaria endemic districts of Bangladesh. A multi-stage cluster sampling technique was used and 9750 blood samples were collected. Rapid Diagnostic Tests (RDT) were used for the diagnosis of malaria. The weighted average malaria prevalence in the thirteen endemic districts was 3.97%. In five south-eastern districts weighted average malaria prevalence rate was 6.00% and in the eight north-eastern districts weighted average malaria prevalence rate was (0.40%). The highest malaria prevalence was observed in Khagrachari district. The majority of the cases (90.18%) were P. falciparum infections. Malaria morbidity rates in five south-eastern districts was 2.94%. In eight north-eastern districts, morbidity was 0.07%.

Conclusion and Significance

Bangladesh has hypoendemic malaria with P. falciparum the dominant parasite species. The malaria situation in the five north-eastern districts of Bangladesh in particular warrants urgent attention. Detailed maps of the baseline malaria prevalence and summaries of the data collected are provided along with the survey results in full, in a supplemental information  相似文献   

9.

Background

To guide malaria elimination efforts in Swaziland and other countries, accurate assessments of transmission are critical. Pooled-PCR has potential to efficiently improve sensitivity to detect infections; serology may clarify temporal and spatial trends in exposure.

Methodology/Principal Findings

Using a stratified two-stage cluster, cross-sectional design, subjects were recruited from the malaria endemic region of Swaziland. Blood was collected for rapid diagnostic testing (RDT), pooled PCR, and ELISA detecting antibodies to Plasmodium falciparum surface antigens. Of 4330 participants tested, three were RDT-positive yet false positives by PCR. Pooled PCR led to the identification of one P. falciparum and one P. malariae infection among RDT-negative participants. The P. falciparum-infected participant reported recent travel to Mozambique. Compared to performing individual testing on thousands of samples, PCR pooling reduced labor and consumable costs by 95.5%. Seropositivity was associated with age ≥20 years (11·7% vs 1·9%, P<0.001), recent travel to Mozambique (OR 4.4 [95% CI 1.0–19.0]) and residence in southeast Swaziland (RR 3.78, P<0.001).

Conclusions

The prevalence of malaria infection and recent exposure in Swaziland are extremely low, suggesting elimination is feasible. Future efforts should address imported malaria and target remaining foci of transmission. Pooled PCR and ELISA are valuable surveillance tools for guiding elimination efforts.  相似文献   

10.

Background

Antibodies, particularly cytophilic IgG subclasses, with specificity for asexual blood stage antigens of Plasmodium falciparum, are thought to play an important role in acquired immunity to malaria. Evaluating such responses in longitudinal sero-epidemiological field studies, allied to increasing knowledge of the immunological mechanisms associated with anti-malarial protection, will help in the development of malaria vaccines.

Methods and Findings

We conducted a 1-year follow-up study of 305 Senegalese children and identified those resistant or susceptible to malaria. In retrospective analyses we then compared post-follow-up IgG responses to six asexual-stage candidate malaria vaccine antigens in groups of individuals with clearly defined clinical and parasitological histories of infection with P. falciparum. In age-adjusted analyses, children resistant to malaria as well as to high-density parasitemia, had significantly higher IgG1 responses to GLURP and IgG3 responses to MSP2 than their susceptible counterparts. Among those resistant to malaria, high anti-MSP1 IgG1 levels were associated with protection against high-density parasitemia. To assess functional attributes, we used an in vitro parasite growth inhibition assay with purified IgG. Samples from individuals with high levels of IgG directed to MSP1, MSP2 and AMA1 gave the strongest parasite growth inhibition, but a marked age-related decline was observed in these effects.

Conclusion

Our data are consistent with the idea that protection against P. falciparum malaria in children depends on acquisition of a constellation of appropriate, functionally active IgG subclass responses directed to multiple asexual stage antigens. Our results suggest at least two distinct mechanisms via which antibodies may exert protective effects. Although declining with age, the growth inhibitory effects of purified IgG measurable in vitro reflected levels of anti-AMA1, -MSP1 and -MSP2, but not of anti-GLURP IgG. The latter could act on parasite growth via indirect parasiticidal pathways.  相似文献   

11.

Background

Severe malaria (SM) is classically associated with Plasmodium falciparum infection. Little information is available on the contribution of P. vivax to severe disease. There are some epidemiological indications that P. vivax or mixed infections protect against complications and deaths. A large morbidity surveillance conducted in an area where the four species coexist allowed us to estimate rates of SM among patients infected with one or several species.

Methods and Findings

This was a prospective cohort study conducted within the framework of the Malaria Vaccine Epidemiology and Evaluation Project. All presumptive malaria cases presenting at two rural health facilities over an 8-y period were investigated with history taking, clinical examination, and laboratory assessment. Case definition of SM was based on the World Health Organization (WHO) criteria adapted for the setting (i.e., clinical diagnosis of malaria associated with asexual blood stage parasitaemia and recent history of fits, or coma, or respiratory distress, or anaemia [haemoglobin < 5 g/dl]). Out of 17,201 presumptive malaria cases, 9,537 (55%) had a confirmed Plasmodium parasitaemia. Among those, 6.2% (95% confidence interval [CI] 5.7%–6.8%) fulfilled the case definition of SM, most of them in children <5 y. In this age group, the proportion of SM was 11.7% (10.4%–13.2%) for P. falciparum, 8.8% (7.1%–10.7%) for P. vivax, and 17.3% (11.7%–24.2%) for mixed P. falciparum and P. vivax infections. P. vivax SM presented more often with respiratory distress than did P. falciparum (60% versus 41%, p = 0.002), but less often with anaemia (19% versus 41%, p = 0.0001).

Conclusion

P. vivax monoinfections as well as mixed Plasmodium infections are associated with SM. There is no indication that mixed infections protected against SM. Interventions targeted toward P. falciparum only might be insufficient to eliminate the overall malaria burden, and especially severe disease, in areas where P. falciparum and P. vivax coexist.  相似文献   

12.

Background

Malaria rapid diagnostic tests (RDTs) offer significant potential to improve the diagnosis of malaria, and are playing an increasing role in malaria case management, control and elimination. Peru, along with other South American countries, is moving to introduce malaria RDTs as components of malaria control programmes supported by the Global Fund for AIDS, TB and malaria. The selection of the most suitable malaria RDTs is critical to the success of the programmes.

Methods

Eight of nine microscopy positive P. falciparum samples collected in Iquitos, Peru tested negative or weak positive using HRP2-detecting RDTs. These samples were tested for the presence of pfhrp2 and pfhrp3 and their flanking genes by PCR, as well as the presence of HRP proteins by ELISA. To investigate for geographic extent of HRP-deleted parasites and their temporal occurrence a retrospective study was undertaken on 148 microscopy positive P. falciparum samples collected in different areas of the Amazon region of Peru.

Findings

Eight of the nine isolates lacked the pfhrp2 and/or pfhrp3 genes and one or both flanking genes, and the absence of HRP was confirmed by ELISA. The retrospective study showed that 61 (41%) and 103 (70%) of the 148 samples lacked the pfhrp2 or pfhrp3 genes respectively, with 32 (21.6%) samples lacking both hrp genes.

Conclusions

This is the first documentation of P. falciparum field isolates lacking pfhrp2 and/or pfhrp3. The high frequency and wide distribution of different parasites lacking pfhrp2 and/or pfhrp3 in widely dispersed areas in the Peruvian Amazon implies that malaria RDTs targeting HRP2 will fail to detect a high proportion of P. falciparum in malaria-endemic areas of Peru and should not be used. RDTs detecting parasite LDH or aldolase and quality microscopy should be use for malaria diagnosis in this region. There is an urgent need for investigation of the abundance and geographic distribution of these parasites in Peru and neighbouring countries.  相似文献   

13.

Background

Malaria and schistosomiasis often overlap in tropical and subtropical countries and impose tremendous disease burdens; however, the extent to which schistosomiasis modifies the risk of febrile malaria remains unclear.

Methods

We evaluated the effect of baseline S. haematobium mono-infection, baseline P. falciparum mono-infection, and co-infection with both parasites on the risk of febrile malaria in a prospective cohort study of 616 children and adults living in Kalifabougou, Mali. Individuals with S. haematobium were treated with praziquantel within 6 weeks of enrollment. Malaria episodes were detected by weekly physical examination and self-referral for 7 months. The primary outcome was time to first or only malaria episode defined as fever (≥37.5°C) and parasitemia (≥2500 asexual parasites/µl). Secondary definitions of malaria using different parasite densities were also explored.

Results

After adjusting for age, anemia status, sickle cell trait, distance from home to river, residence within a cluster of high S. haematobium transmission, and housing type, baseline P. falciparum mono-infection (n = 254) and co-infection (n = 39) were significantly associated with protection from febrile malaria by Cox regression (hazard ratios 0.71 and 0.44; P = 0.01 and 0.02; reference group: uninfected at baseline). Baseline S. haematobium mono-infection (n = 23) did not associate with malaria protection in the adjusted analysis, but this may be due to lack of statistical power. Anemia significantly interacted with co-infection (P = 0.009), and the malaria-protective effect of co-infection was strongest in non-anemic individuals. Co-infection was an independent negative predictor of lower parasite density at the first febrile malaria episode.

Conclusions

Co-infection with S. haematobium and P. falciparum is significantly associated with reduced risk of febrile malaria in long-term asymptomatic carriers of P. falciparum. Future studies are needed to determine whether co-infection induces immunomodulatory mechanisms that protect against febrile malaria or whether genetic, behavioral, or environmental factors not accounted for here explain these findings.  相似文献   

14.

Background

Pregnancy is a known risk factor for malaria which is associated with increased maternal and infant mortality and morbidity in areas of moderate-high malaria transmission intensity where Plasmodium falciparum predominates. The nature and impact of malaria, however, is not well understood in pregnant women residing in areas of low, unstable malaria transmission where P. falciparum and P. vivax co-exist.

Methods

A large longitudinal active surveillance study of malaria was conducted in the Chittagong Hill Districts of Bangladesh. Over 32 months in 2010–2013, the period prevalence of asymptomatic P. falciparum infections was assessed by rapid diagnostic test and blood smear and compared among men, non-pregnant women and pregnant women. A subset of samples was tested for infection by PCR. Hemoglobin was assessed. Independent risk factors for malaria infection were determined using a multivariate logistic regression model.

Results

Total of 34 asymptomatic P. falciparum infections were detected by RDT/smear from 3,110 tests. The period prevalence of asymptomatic P. falciparum infection in pregnant women was 2.3%, compared to 0.5% in non-pregnant women and 0.9% in men. All RDT/smear positive samples that were tested by PCR were PCR-positive, and PCR detected additional 35 infections that were RDT/smear negative. In a multivariate logistic regression analysis, pregnant women had 5.4-fold higher odds of infection as compared to non-pregnant women. Malaria-positive pregnant women, though asymptomatic, had statistically lower hemoglobin than those without malaria or pregnancy. Asymptomatic malaria was found to be evenly distributed across space and time, in contrast to symptomatic infections which tend to cluster.

Conclusion

Pregnancy is a risk factor for asymptomatic P. falciparum infection in the Chittagong Hill Districts of Bangladesh, and pregnancy and malaria interact to heighten the effect of each on hemoglobin. The even distribution of asymptomatic malaria, without temporal and spatial clustering, may have critical implications for malaria elimination strategies.  相似文献   

15.
Zhou YH  Liu FL  Yao ZH  Duo L  Li H  Sun Y  Zheng YT 《PloS one》2011,6(1):e16349

Background

Co-infection with HIV and HCV and/or HBV is highly prevalent in intravenous drug users (IDUs). Because of the proximity to the “Golden Triangle”, HIV prevalence among the IDUs is very high in the China-Myanmar border region. However, there are few studies about co-infection with HIV and HCV and/or HBV, especially in the region that belongs to Myanmar.

Methods

721 IDUs, including 403 Chinese and 318 Burmese, were investigated for their HIV, hepatitis B virus (HBV), and hepatitis C virus (HCV) serological status. Statistical analysis was performed to evaluate the differences of the epidemic situation between the Chinese IDUs and the Burmese IDUs.

Results

Among the Chinese IDUs and the Burmese IDUs, HCV infection was the most prevalent (69.0% vs 48.1%, P<0.001), followed by HBV (51.6% vs 43.1%, P<0.05) and HIV (33.7% vs 27.0%, P>0.05). Besides, there were more HIV-HBV co-infected IDUs (20.1% vs 11.3%, P<0.005), and HIV-HCV co-infected IDUs (31.8% vs 23.9%, P<0.05) in China than in Myanmar, as well as HIV-HBV-HCV triple infection (19.1% vs 10.4%, P<0.005).

Conclusion

Co-infection with HIV and HCV and/or HBV is highly prevalent among the IDUs in the China-Myanmar border region. The HIV epidemic appears to be in a downward trend, compared with previous reports. However, all infections were more prevalent among the Chinese IDUs than among the Burmese.  相似文献   

16.

Background

The emergence of artemisinin-resistant P. falciparum malaria in South-East Asia highlights the need for continued global surveillance of the efficacy of artemisinin-based combination therapies.

Methods

On the Kenyan coast we studied the treatment responses in 474 children 6–59 months old with uncomplicated P. falciparum malaria in a randomized controlled trial of dihydroartemisinin-piperaquine vs. artemether-lumefantrine from 2005 to 2008. (ISRCTN88705995)

Results

The proportion of patients with residual parasitemia on day 1 rose from 55% in 2005–2006 to 87% in 2007–2008 (odds ratio, 5.4, 95%CI, 2.7–11.1; P<0.001) and from 81% to 95% (OR, 4.1, 95%CI, 1.7–9.9; P = 0.002) in the DHA-PPQ and AM-LM groups, respectively. In parallel, Kaplan-Meier estimated risks of apparent recrudescent infection by day 84 increased from 7% to 14% (P = 0.1) and from 6% to 15% (P = 0.05) with DHA-PPQ and AM-LM, respectively. Coinciding with decreasing transmission in the study area, clinical tolerance to parasitemia (defined as absence of fever) declined between 2005–2006 and 2007–2008 (OR body temperature >37.5°C, 2.8, 1.9–4.1; P<0.001). Neither in vitro sensitivity of parasites to DHA nor levels of antibodies against parasite extract accounted for parasite clearance rates or changes thereof.

Conclusions

The significant, albeit small, decline through time of parasitological response rates to treatment with ACTs may be due to the emergence of parasites with reduced drug sensitivity, to the coincident reduction in population-level clinical immunity, or both. Maintaining the efficacy of artemisinin-based therapy in Africa would benefit from a better understanding of the mechanisms underlying reduced parasite clearance rates.

Trial Registration

Controlled-Trials.com ISRCTN88705995  相似文献   

17.

Background

Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention.

Methods and Findings

Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR)  =  2.7 (95% CI 1.42, 5.01, P  =  0.002) but not in those without detectable parasitaemia (HR  =  1.0 (95% CI 0.74, 1.42, P  =  0.9).

Conclusions

We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual''s capacity to mount an effective immune response to P. falciparum infection.  相似文献   

18.

Background

Helminth infection is common in malaria endemic areas, and an interaction between the two would be of considerable public health importance. Animal models suggest that helminth infections may increase susceptibility to malaria, but epidemiological data has been limited and contradictory.

Methodology/Principal Findings

In a vaccine trial, we studied 387 one- to six-year-old children for the effect of helminth infections on febrile Plasmodium falciparum malaria episodes. Gastrointestinal helminth infection and eosinophilia were prevalent (25% and 50% respectively), but did not influence susceptibility to malaria. Hazard ratios were 1 for gastrointestinal helminth infection (95% CI 0.6–1.6) and 0.85 and 0.85 for mild and marked eosinophilia, respectively (95% CI 0.56–1.76 and 0.69–1.96). Incident rate ratios for multiple episodes were 0.83 for gastro-intestinal helminth infection (95% CI 0.5–1.33) and 0.86 and 0.98 for mild and marked eosinophilia (95% CI 0.5–1.4 and 0.6–1.5).

Conclusions/Significance

There was no evidence that infection with gastrointestinal helminths or urinary schistosomiasis increased susceptibility to Plasmodium falciparum malaria in this study. Larger studies including populations with a greater prevalence of helminth infection should be undertaken.  相似文献   

19.

Background

Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB) and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil.

Methods

Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases); and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls). The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection.

Results

GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02). Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity.

Conclusion

Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this parasite is associated with the GPB S+ variant in this population.  相似文献   

20.

Background

In Africa, infant susceptibility to Plasmodium falciparum malaria increases substantially as fetal hemoglobin (HbF) and maternal immune IgG disappear from circulation. During the first few months of life, however, resistance to malaria is evidenced by extremely low parasitemias, the absence of fever, and the almost complete lack of severe disease. This resistance has previously been attributed in part to poor parasite growth in HbF-containing red blood cells (RBCs). A specific role for maternal immune IgG in infant resistance to malaria has been hypothesized but not yet identified.

Methods and Findings

We found that P. falciparum parasites invade and develop normally in fetal (cord blood, CB) RBCs, which contain up to 95% HbF. However, these parasitized CB RBCs are impaired in their binding to human microvascular endothelial cells (MVECs), monocytes, and nonparasitized RBCs – cytoadherence interactions that have been implicated in the development of high parasite densities and the symptoms of malaria. Abnormal display of the parasite''s cytoadherence antigen P. falciparum erythrocyte membrane protein-1 (PfEMP-1) on CB RBCs accounts for these findings and is reminiscent of that on HbC and HbS RBCs. IgG purified from the plasma of immune Malian adults almost completely abolishes the adherence of parasitized CB RBCs to MVECs.

Conclusions

Our data suggest a model of malaria protection in which HbF and maternal IgG act cooperatively to impair the cytoadherence of parasitized RBCs in the first few months of life. In highly malarious areas of Africa, an infant''s contemporaneous expression of HbC or HbS and development of an immune IgG repertoire may effectively reconstitute the waning protective effects of HbF and maternal immune IgG, thereby extending the malaria resistance of infancy into early childhood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号