首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Global Change Biology》2018,24(1):308-321
Conserving native biodiversity in the face of human‐ and climate‐related impacts is a challenging and globally important ecological problem that requires an understanding of spatially connected, organismal‐habitat relationships. Globally, a suite of disturbances (e.g., agriculture, urbanization, climate change) degrades habitats and threatens biodiversity. A mosaic approach (in which connected, interacting collections of juxtaposed habitat patches are examined) provides a scientific foundation for addressing many disturbance‐related, ecologically based conservation problems. For example, if specific habitat types disproportionately increase biodiversity, these keystones should be incorporated into research and management plans. Our sampling of fish biodiversity and aquatic habitat along ten 3‐km sites within the Upper Neosho River subdrainage, KS, from June‐August 2013 yielded three generalizable ecological insights. First, specific types of mesohabitat patches (i.e., pool, riffle, run, and glide) were physically distinct and created unique mosaics of mesohabitats that varied across sites. Second, species richness was higher in riffle mesohabitats when mesohabitat size reflected field availability. Furthermore, habitat mosaics that included more riffles had greater habitat diversity and more fish species. Thus, riffles (<5% of sampled area) acted as keystone habitats. Third, additional conceptual development, which we initiate here, can broaden the identification of keystone habitats across ecosystems and further operationalize this concept for research and conservation. Thus, adopting a mosaic approach can increase scientific understanding of organismal‐habitat relationships, maintain natural biodiversity, advance spatial ecology, and facilitate effective conservation of native biodiversity in human‐altered ecosystems.  相似文献   

2.
Protected areas are generally regarded as essential for the long-term maintenance of biodiversity. Evidence for their effectiveness in this regard is, however, somewhat equivocal. Here, we document the relationship between the proportion of protected land and species richness in a region, both with and without taking spatial variation in environmental energy availability into account. Using the South African avifauna as a case study, we find that total and threatened species richness exhibit modest increases with the proportion of protected land. While the protected area network should be expanded, it is essential that conservation efforts also focus on maintaining biodiversity in the wider unprotected landscape that supports high species richness.  相似文献   

3.
氮沉降对森林生物多样性的影响   总被引:8,自引:0,他引:8  
鲁显楷  莫江明  董少峰 《生态学报》2008,28(11):5532-5548
从3个方面论述了氮沉降对森林生物多样性影响:(1)森林植物多样性,包括乔木层植物、林下层植物和隐花植物;(2)土壤微生物多样性,主要是细菌和真菌;(3)森林动物多样性:主要包括地下土壤动物和地上草食动物。综合来看,氮沉降改变了物种组成,过量氮沉降降低了生物多样性。同时,也对氮沉降影响生物多样性的机理进行了分析。最后,还探讨了当前在氮沉降对森林生物多样性影响的研究方面存在的问题以及今后研究的方向。  相似文献   

4.
Increasing global energy demands have led to the ongoing intensification of hydrocarbon extraction from marine areas. Hydrocarbon extractive activities pose threats to native marine biodiversity, such as noise, light, and chemical pollution, physical changes to the sea floor, invasive species, and greenhouse gas emissions. Here, we assessed at a global scale the spatial overlap between offshore hydrocarbon activities and marine biodiversity (>25,000 species, nine major ecosystems, and marine protected areas), and quantify the changes over time. We discovered that two‐thirds of global offshore hydrocarbon activities occur in areas within the top 10% for species richness, range rarity, and proportional range rarity values globally. Thus, while hydrocarbon activities are undertaken in less than one percent of the ocean's area, they overlap with approximately 85% of all assessed species. Of conservation concern, 4% of species with the largest proportion of their range overlapping hydrocarbon activities are range restricted, potentially increasing their vulnerability to localized threats such as oil spills. While hydrocarbon activities have extended to greater depths since the mid‐1990s, we found that the largest overlap is with coastal ecosystems, particularly estuaries, saltmarshes and mangroves. Furthermore, in most countries where offshore hydrocarbon exploration licensing blocks have been delineated, they do not overlap with marine protected areas (MPAs). Although this is positive in principle, many countries have far more licensing block areas than protected areas, and in some instances, MPA coverage is minimal. These findings suggest the need for marine spatial prioritization to help limit future spatial overlap between marine conservation priorities and hydrocarbon activities. Such prioritization can be informed by the spatial and quantitative baseline information provided here. In increasingly shared seascapes, prioritizing management actions that set both conservation and development targets could help minimize further declines of biodiversity and environmental changes at a global scale.  相似文献   

5.
Protected areas serve as reserves of biological diversity and conserve the naturalness of characteristic regional ecosystems. Numerous approaches have been applied to estimate the level of transformation of ecosystems and to compare trends inside and outside of protected areas. In this study, we apply aggregate indicators of anthropogenic pressures on ecosystems and biodiversity in a fine-scale spatial analysis to compare the level of human influence within protected and unprotected areas. The actual state of ecosystems is compared to a natural baseline that is intact or potential natural state. The results show that in a non-protected Central-European landscape, humans appropriate a considerable share of natural ecosystem productivity and carbon stocks, and significantly reduce natural biodiversity and ecosystem services. Human appropriation of net primary production reached more than 60% in total, humans reduced original biodiversity levels by 69%, and net carbon storage was considerably decreased by intensive types of land use. All three indicators significantly differed between protected areas and unprotected areas, suggesting that protected areas maintain higher biodiversity levels, store more carbon and are in total less influenced by human exploitation than average non-protected landscape. Furthermore, we bring evidence that human appropriation of net primary production is negatively related both to biodiversity and ecosystem services indicated by mean species abundance and net carbon storage at the national level. Our results contribute to the quantitative evidence of the impacts of anthropogenic transformation of natural ecosystems on the ecosystem condition, supporting the hypothesis that protected areas significantly reduce anthropogenic pressures and contribute to maintaining critical ecosystem services and biodiversity.  相似文献   

6.
Global climate change is a major threat to biodiversity, posing increasing pressures on species to adapt in situ or shift their ranges. A protected area network is one of the main instruments to alleviate the negative impacts of climate change. Importantly, protected area networks might be expected to enhance the resilience of regional populations of species of conservation concern, resulting in slower species loss in landscapes with a significant amount of protected habitat compared to unprotected landscapes. Based on national bird atlases compiled in 1974–1989 and 2006–2010, this study examines the recent range shifts in 90 forest, mire, marshland, and Arctic mountain heath bird species of conservation concern in Finland, as well as the changes in their species richness in protected versus unprotected areas. The trends emerging from the atlas data comparisons were also related to the earlier study dealing with predictions of distributional changes for these species for the time slice of 2051–2080, developed using bioclimatic envelope models (BEMs). Our results suggest that the observed changes in bird distributions are in the same direction as the BEM‐based predictions, resulting in a decrease in species richness of mire and Arctic mountain heath species and an increase in marshland species. The patterns of changes in species richness between the two time slices are in general parallel in protected and unprotected areas. However, importantly, protected areas maintained a higher level of species richness than unprotected areas. This finding provides support for the significance and resilience provision of protected area networks in preserving species of conservation concern under climate change.  相似文献   

7.
It has been suggested that biodiversity in agroecosystems depends on both landscape heterogeneity and farm management, but at the same time, studies of biodiversity in relation to both landscape variables and farm management are rare. We investigated the species richness of plants, butterflies, carabids, rove beetles and the diversity of spiders in cereal fields, leys (grass and clover crop) and semi-natural pastures at 16 farms in Central East Sweden. The farms were divided into eight pairs of one conventional and one organic farm to enable us to separate the effects of landscape and farm management on biodiversity. The pairing was based on land use, location, and landscape features. Species richness of different taxonomic groups was generally not correlated. There were no differences in species richness between the farming systems, except for carabids that had higher numbers of species on conventional farms. The species richness generally increased with landscape heterogeneity on a farm scale. Habitat type had a major effect on the species richness for most groups, with most species found in pastures and leys. The correlations between species richness and landscape variables on a farm scale, and not on a scale of multiple farms, identify farmers as the important decision-maker in conservation issues for these taxonomic groups. We discuss the role of species richness of pests' natural enemies for biological control and conservation strategies of the more common species in the agricultural landscape.  相似文献   

8.
Effects of nitrogen deposition on forest biodiversity   总被引:1,自引:0,他引:1       下载免费PDF全文
Lu X K  Mo J M  Dong S F 《农业工程》2008,28(11):5532-5548
Humans have altered global and regional cycles of nitrogen (N) more than any other elements. Increasing N emissions to the atmosphere from accelerating industrialization and production and use of fertilizer N now make N deposition significant not only in densely populated regions of Europe and North America, but also in other parts of the world (e.g., Asia and Latin America). Increased atmospheric N deposition is known to be able to reduce biodiversity in natural and semi-natural ecosystems. It is suggested that N deposition will be the third greatest driver of biodiversity loss on the global scale in this century, after land use and climate change. Based on published study results, we reviewed the impacts of N deposition on forest biodiversity by emphasizing 3 aspects: (1) plant diversity, including arborous plants, understory plants and cryptogam plants; (2) soil microorganism diversity; (3) animal diversity, including underground soil fauna and aboveground herbivores. In general, it was found that N deposition could alter species diversity, and excessive N could reduce species diversity, such as richness and abundance, and even lose special species. We also identified specific mechanisms on how excessive N deposition affected forest biodiversity. Finally, we summarized the current status of research on N deposition in China and in other countries, and proposed potential research activities and recommendations.  相似文献   

9.
10.
Modern agricultural practices pose serious threats to biodiversity worldwide. Species losses from habitat conversion are well documented, but indirect impacts such as reduced water availability to adjacent ecosystems are less known. San Quintín is an important agricultural valley in the mediterranean climate region of Baja California, Mexico. The region is also a hotspot of plant species richness and endemism. Plant species in the region are here analyzed by comparison of the contemporary flora to historical botanical collections to identify extirpations. Historical collections indicate that habitat loss to agriculture has been a direct cause of species losses. As importantly, the unsustainable extraction of groundwater has apparently led to salt water intrusion, resulting in the loss of 22 native plant taxa, including 13 rare plants. Seventy-eight percent of all the vernal pool taxa have been lost from the flora (including 85 % of the rare taxa) and 11 % of plants of riparian and pond habitat (including 25 % of the rare taxa) are no longer found in the region. Unsustainable agricultural practices continue to threaten fragile coastal ecosystems and are a serious challenge to current and future conservation efforts. Ironically, these same practices frequently result in abandonment of cultivated areas. Owing to indirect impacts, conservation of biodiversity and large-scale agricultural operations are even less compatible on a regional scale than indicated by direct impacts. It is vital that sustainable agricultural practices be adopted locally and globally to avoid further losses of biodiversity.  相似文献   

11.
Agricultural intensification resulted in substantial loss of farmland biodiversity. Semi-natural habitats may be viewed as potential buffers of these adverse impacts, but a rigorous assessment of their capacity for supporting farmland biodiversity is lacking. In this study, we explored conservation potential of two different types of semi-natural habitats for birds in intensively-used agricultural landscapes – farmland hedges (i.e., linear strips of shrubby and tree vegetation) and open scrubland (i.e., scattered shrubs and abandoned orchards). Specifically, we tested whether the abundance and species richness of birds differ between these habitats considering various species traits, such as habitat affinity (i.e., forest, farmland and urban species), diet specialization (i.e., animal eaters, plant eaters, and omnivores) and conservation status (Species of European Conservation Concern). We found that open scrubland hosted on average 37.9 bird species and 122.6 individuals per 1 km2 of the transect, whereas farmland hedges hosted only 19 species and 61.8 individuals per 1 km2 of the transect. However, results have substantially changed if we considered the area of suitable habitat into account. More specifically, open scrubland hosted more bird species and individuals when we considered open habitat species and the area of open habitats, whereas farmland hedges had higher species diversity and individuals of woodland bird species when we considered the area of woodland habitats. Similarly, analyses of habitat affiliations of individual species corresponded to the whole-community patterns; and revealed that several woodland bird species were mainly associated with farmland hedges (e.g., Chaffinch Fringilla coelebs, Common Nightingale Luscinia megarhynchos and Blackcap Sylvia atricapilla), whereas the open scrubland was preferred by open habitat bird species (e.g., Corn Bunting Emberiza calandra, Quail Coturnix coturnix and Skylark Alauda arvensis). These results demonstrate that semi-natural habitats, both open scrubland and farmland hedges, have large potential for promotion and conservation of bird communities within intensively used agricultural landscapes, as both may have represented suitable habitats for species with different ecological requirements. Therefore, management measures focused on the enlargement of the area of these habitats, in combination with suitable management (e.g., regulating the progress of natural succession in open scrubland; increasing structural diversity of existing farmland hedges), may substantially contribute to bird conservation within agricultural landscapes.  相似文献   

12.
Evaluating the effectiveness of protected areas for sustaining biodiversity is crucial to achieving conservation outcomes. While studies of effectiveness have improved our understanding of protected‐area design and management, few investigations (< 5%) have quantified the ecological performance of reserves for conserving species. Here, we present an empirical evaluation of protected‐area effectiveness using long‐term measures of a vulnerable assemblage of species. We compare forest and woodland bird diversity in the Australian Capital Territory over 11 yr on protected and unprotected areas located in temperate eucalypt woodland and matched by key habitat attributes. We examine separately the response of birds to protected areas established prior to 1995 and after 1995 when fundamental changes were made to regional conservation policy. Bird diversity was measured in richness, occurrence of vulnerable species, individual species trajectories and functional trait groups. We found that protected areas were effective in maintaining woody vegetation cover in the study region, but were less effective in the protection of the target bird species assemblage. Protected areas were less species rich than unprotected areas, with significant declines in richness across sites protected prior to 1995. Small, specialised and vulnerable species showed stronger associations with unprotected areas than protected areas. Our findings indicate that recently established reserves (post‐1995) are performing similarly to unprotected woodland areas in terms of maintaining woodland bird diversity, and that both of these areas are more effective in the conservation of woodland bird populations than reserves established prior to 1995. We demonstrate that the conservation value of protected areas is strongly influenced by the physical characteristics, as well as the landscape context, of a given reserve and can diminish with changes in surrounding land use over time. Both protected areas and off‐reserve conservation schemes have important roles to play in securing species populations.  相似文献   

13.
Restricted-Range Fishes and the Conservation of Brazilian Freshwaters   总被引:1,自引:0,他引:1  

Background

Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce.

Methodology/Principal Findings

Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future.

Conclusions/Significance

We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems. Proper management (e. g. forestry code enforcement, landscape planning) and conservation (e. g. formal protection) of the 540 watersheds detected herein will be decisive in avoiding species extinction in the richest aquatic ecosystems on the planet.  相似文献   

14.
中国生物多样性就地保护成效与展望   总被引:1,自引:0,他引:1  
王伟  李俊生 《生物多样性》2021,29(2):133-1754
生物多样性就地保护是指通过开展自然保护地体系的建立与管理, 结合自然保护地以外其他有效的基于区域的保护措施(other effective area-based conservation measures, OECMs), 从而实现物种种群及其栖息地的保护与恢复以及保障和提升生态系统服务的目标。就地保护是实现2020年全球生物多样性保护目标最为重要的措施之一。本文从自然保护地数量与面积、代表性、有效性, 以及其他生物多样性就地保护措施等方面, 整理和综述了国内外近年来的相关报道。总体来看, 我国基本建立了具有中国特色的生物多样性就地保护与管理体系, 实施了各项生物多样性保护恢复措施, 取得了一系列重大进展。自然保护地的面积和数量均呈现上升趋势, 已覆盖陆域国土面积的18%, 对一些重要生态系统及重点保护物种的保护取得了一定成效。正在建设的10处国家公园体制试点提升了部分重点物种的保护连通性。自然保护区总体管理状况相对较好, 保护了90%以上的哺乳动物和97%的兰科植物。此外, 其他有效的基于区域的保护措施亦为生物多样性就地保护贡献了民间力量。在此基础上, 本文对照《中国生物多样性保护战略与行动计划(2011-2030年)》中对“加强生物多样性就地保护”的各项要求, 分析总结了当前我国生物多样性就地保护仍然存在的问题与不足, 具体表现在以下几个方面: 自然保护地整体保护能力仍有待提升; 生物多样性保护优先区域仍然存在保护空缺; 自然保护区管理质量有待提升; 缺乏公共协商机制; 自然保护地以外的其他就地保护工作仍在探索阶段等。在此基础上, 对将来我国生物多样性就地保护提出了进一步建议与展望: (1)制定更为具体和量化的生物多样性就地保护目标; (2)加大力度减少物种受威胁程度, 特别是受关注较少的物种; (3)以保障和提升生态系统服务为目标, 提升生态系统保护修复的系统性与整体性; (4)加强自然保护地以外的生物多样性就地保护; (5)完善长期监测体系, 为生物多样性就地保护成效评估提供数据支撑。本文可为“2020年后全球生物多样性框架”特别是就地保护目标的制定与实施提供参考。  相似文献   

15.
Threats and biodiversity in the mediterranean biome   总被引:1,自引:0,他引:1  
Aim Global conservation assessments recognize the mediterranean biome as a priority for the conservation of the world's biodiversity. To better direct future conservation efforts in the biome, an improved understanding of the location, magnitude and trend of key threats and their relationship with species of conservation importance is needed. Location Mediterranean‐climate regions in California‐Baja California, Chile, South Africa, Australia and the Mediterranean Basin. Methods We undertook a systematic, pan‐regional assessment of threats in the mediterranean biome including human population density, urban area and agriculture. To realize the full implications of these threats on mediterranean biodiversity, we examined their relationship with species of conservation concern: threatened mammals at the global scale and threatened plants at the subecoregional scale in California, USA. Results Across the biome, population density and urban area increased by 13% and agriculture by 1% between 1990 and 2000. Both population density and urban area were greatest in California‐Baja California and least in Australia while, in contrast, agriculture was greatest in Australia and least in California‐Baja California. In all regions lowlands were most affected by the threats analysed, with the exception of population density in the Chilean matorral. Threatened species richness had a significant positive correlation with population density at global and subecoregional scales, while threatened species were found to increase with the amount of urban area and decrease as the amount of natural area and unfragmented core area increased. Main conclusions Threats to mediterranean biodiversity have increased from 1990 to 2000, although patterns vary both across and within the five regions. The need for future conservation efforts is further underlined by the positive correlation between species of conservation concern and the increase in population density over the last decade. Challenges to reducing threats extend beyond those analysed to include human–environmental interactions and their synergistic effects, such as urbanization and invasive species and wildfires.  相似文献   

16.
To better identify biodiversity hotspots for conservation on Hainan Island, a tropical island in southern China, we assessed spatial variation in phylogenetic diversity and species richness using 18,976 georeferenced specimen records and a newly reconstructed molecular phylogeny of 957 native woody plants. Within this framework, we delineated bioregions based on vegetation composition and mapped areas of neoendemism and paleoendemism to identify areas of priority for conservation. Our results reveal that the southwest of Hainan is the most important hot spot for endemism and plant diversity followed by the southeast area. The distribution of endemic species showed a scattered, rather than clustered, pattern on the island. Based on phylogenetic range‐weighted turnover metrics, we delineated three major vegetational zones in Hainan. These largely correspond to natural secondary growth and managed forests (e.g., rubber and timber forests) in central Hainan, old‐growth forests and natural secondary growth forest at the margins of Hainan, and nature reserves on the island (e.g., Jianfeng and Diaoluo National Nature Reserves). Our study helps to elucidate potential botanical conservation priorities for Hainan within an evolutionary, phylogenetic framework.  相似文献   

17.
《PLoS biology》2016,14(1)
Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world’s species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3–8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse.  相似文献   

18.
Savannahs are widespread vegetation type in Sudanian zone of Africa. As protected areas are often assumed to be the best way to conserve biodiversity, we assessed the effectiveness of the Pendjari Biosphere Reserve in Benin, for maintaining savannah woody species composition, diversity and structure. Square plots of 900 m2 were randomly established in protected and surrounding unprotected savannahs, and all woody species (dbh ≥ 1 cm) were recorded and identified. Species composition, Importance Value Index, densities, basal area and diversity indexes were assessed in relation to conservation status. The results showed that DCA based on presence/absence species data did not separate clearly protected savannahs from unprotected ones. However, some species were prominent in unprotected savannahs while others showed the same scheme in protected ones. Diversity indexes indicated a good distribution of species in the two savannah types. The woody density showed a higher value in protected than unprotected savannah at shrub layer level. The basal area was significantly higher in the protected savannah than unprotected one at the two woody layer levels. It can be concluded that biodiversity conservation in surrounding unprotected areas should be of great importance to increase biodiversity conservation by protected area whether specific actions were implemented.  相似文献   

19.
Plantations are established for a variety of reasons including wood production, soil and water conservation, and more recently, carbon sequestration. The effect of this growing land-use change on biodiversity, however, is poorly understood and considerable debate exists as to whether plantations are ‘green deserts’ or valuable habitat for indigenous flora and fauna. This paper synthesizes peer-reviewed articles that provide quantitative data on plant species richness in plantations and paired land uses, most often representative of pre-plantation land cover. The results of this synthesis suggest that the value of plantations for biodiversity varies considerably depending on whether the original land cover is grassland, shrubland, primary forest, secondary forest, or degraded or exotic pasture, and whether native or exotic tree species are planted. The results of this study suggest that plantations are most likely to contribute to biodiversity when established on degraded lands rather than replacing natural ecosystems, such as forests, grasslands, and shrublands, and when indigenous tree species are used rather than exotic species. These findings can help guide afforestation and reforestation programs, including those aimed at increasing terrestrial carbon sequestration.  相似文献   

20.
跨界保护区网络构建研究进展   总被引:7,自引:1,他引:6  
王伟  田瑜  常明  李俊生 《生态学报》2014,34(6):1391-1400
跨界保护区网络是生物多样性保护网络的一种特殊形式,对保护国家或地区边界线附近丰富的生物多样性具有重要意义。构建跨界保护区网络已被列为《生物多样性公约》(Convention on Biological Diversity)框架下"保护区工作组"的一项战略任务,涉及生态、环境、经济、政治等多个领域,成为全球保护区研究领域的热点问题之一。然而,目前我国对跨界保护区的研究尚处于起步阶段,在如何构建不同尺度的跨界保护区网络等方面的研究仍有待进一步加强。在分析了全球、洲际、两个或多个国家和地区之间等不同尺度跨界保护区网络研究的基础上,综述了国内外基于"节点"-"廊道"模式的跨界保护区网络构建研究进展,并结合我国跨界保护区网络建设的实际情况,对我国未来跨界保护区网络构建研究进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号