首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.  相似文献   

2.
The enhancement of intracellular stresses such as oxidative stress and endoplasmic reticulum (ER) stress has been implicated in several neurodegenerative disorders including Parkinson's disease (PD). During a search for compounds that regulate ER stress, a dibenzoylmethane (DBM) derivative 14-26 (2,2'-dimethoxydibenzoylmethane) was identified as a novel neuroprotective agent. Analysis in SH-SY5Y cells and in PC12 cells revealed that the regulation of ER stress by 14-26 was associated with its anti-oxidative property. 14-26 prevented the production of reactive oxygen species (ROS) when the cells were exposed to oxidants such as hydrogen peroxide and 6-hydroxydopamine (6-OHDA) or an ER stressor brefeldin A (BFA). 14-26 also prevented ROS-induced damage in both the ER and the mitochondria, including the protein carbonylation in the microsome and the reduction of the mitochondrial membrane potential. Further examination disclosed the presence of the iron-chelating activity in 14-26. In vivo, 14-26 suppressed both oxidative stress and ER stress and prevented neuronal death in the substantia nigra pars compacta (SNpc) after injection of 6-OHDA in mice. These results suggest that 14-26 is an antioxidant that protects dopaminergic neurons against both oxidative stress and ER stress and could be a therapeutic candidate for the treatment of PD.  相似文献   

3.
Abstract

Aerobic organisms have developed defensive systems to survive in the presence of oxygen and its highly reactive species (ROS). The cellular mechanisms of protection against oxidative injury include: (i) specific enzymes, such as catalase, glutathione peroxidase and superoxide dismutase; (ii) small hydrophilic molecules, such as ascorbate, glutathione and uric acid; and (iii) hydrophobic agents, such as ubiquinone and α-tocopherol in membranes.1 Among these, coenzyme Q (CoQ) is the only lipid-soluble antioxidant that can be synthesized in all organisms so far studied.  相似文献   

4.
5.
Reactive oxygen species (ROS) may cause skeletal muscle degeneration in a number of pathological conditions. Small heat shock proteins (HSPs) have been found to confer resistance against ROS in different cell types; however, the importance of their antioxidant function in skeletal muscle cells remains to be determined. In the present study, differentiation of skeletal myoblasts resulted in protection against hydrogen peroxide-induced cell death and protein oxidation. This differentiation-induced resistance to oxidative stress was associated with increased protein expression of HSP25, increased glutathione levels, and glutathione peroxidase activity, but little change in catalase activity. Overexpression of HSP25 in stably transfected myoblasts produced dose-dependent protection against hydrogen peroxide-induced damage that was associated with increased glutathione levels and glutathione peroxidase activity. Inhibition of glutathione synthesis with buthionine sulfoximine abrogated the protection induced by HSP25 overexpression. These findings indicate that HSP25 may play a key role in regulating the glutathione system and resistance to ROS in skeletal muscle cells.  相似文献   

6.
Human DNA polymerase iota (poliota) is a unique member of the Y-family of specialised polymerases that displays a 5'deoxyribose phosphate (dRP) lyase activity. Although poliota is well conserved in higher eukaryotes, its role in mammalian cells remains unclear. To investigate the biological importance of poliota in human cells, we generated fibroblasts stably downregulating poliota (MRC5-pol iota(KD)) and examined their response to several types of DNA-damaging agents. We show that cell lines downregulating poliota exhibit hypersensitivity to DNA damage induced by hydrogen peroxide (H(2)O(2)) or menadione but not to ethylmethane sulphonate (EMS), UVC or UVA. Interestingly, extracts from cells downregulating poliota show reduced base excision repair (BER) activity. In addition, poliota binds to chromatin after treatment of cells with H(2)O(2) and interacts with the BER factor XRCC1. Finally, green fluorescent protein-tagged poliota accumulates at the sites of oxidative DNA damage in living cells. This recruitment is partially mediated by its dRP lyase domain and ubiquitin-binding domains. These data reveal a novel role of human poliota in protecting cells from oxidative damage.  相似文献   

7.
Previous studies have shown that a variety of mammalian cell types, including macrophages, contain small amounts of redox-active iron in their lysosomes. Increases in the level of this iron pool predispose the cell to oxidative stress. Limiting the availability of intralysosomal redox-active iron could therefore represent potential cytoprotection for cells under oxidative stress.

In the present study we have shown that an initial 6 h exposure of J774 macrophages to 30 μM iron, added to the culture medium as FeCl3, increased the lysosomal iron content and their sensitivity to H2O2-induced (0.25 mM for 30 min) oxidative stress. Over time (24-72 h), however, the cells were desensitized to the cytotoxic effects of H2O2; most likely as a consequence of both lysosomal iron exocytosis and of ferritin synthesis (demonstrated by atomic absorption spectrophotometry, autometallography, and immunohistochemistry). When the cells were exposed to a second dose of iron, their lysosomal content of iron increased again but the cells became no further sensitized to the cytotoxic effects of H2O2. Using the lysosomotropic weak base, acridine orange, we demonstrated that after the second exposure to iron and H2O2, lysosomes remained intact and were no different from control cells which were exposed to H2O2 but not iron.

These data suggest that the initial induction of ferritin synthesis leads to enrichment of lysosomes with ferritin via autophagocytosis. This limits the redox-availability of intralysosomal iron and, in turn, decreases the cells' sensitivity to oxidative stress. These in vitro observations could also explain why cells under pathological conditions, such as haemochromatosis, are apparently able to withstand high iron concentrations for some time in vivo.  相似文献   

8.
The neuroprotective role of TNF receptor 2 (TNFR2) has been shown in various studies. However, a direct role of TNFR2 in oligodendrocyte function has not yet been demonstrated. Using primary oligodendrocytes of transgenic mice expressing human TNFR2, we show here that TNFR2 is primarily expressed on oligodendrocyte progenitor cells. Interestingly, preconditioning with a TNFR2 agonist protects these cells from oxidative stress, presumably by increasing the gene expression of distinct anti-apoptotic and detoxifying proteins, thereby providing a potential mechanism for the neuroprotective role of TNFR2 in oligodendrocyte progenitor cells.  相似文献   

9.
Microorganisms and microbial products induce the release of reactive oxygen species (ROS) from monocytes and other myeloid cells, which may trigger dysfunction and apoptosis of adjacent lymphocytes. Therefore, T cell-mediated immunity is likely to comprise mechanisms of T cell protection against ROS-inflicted toxicity. The present study aimed to clarify the dynamics of reduced sulfhydryl groups (thiols) in human T cells after presentation of viral and bacterial Ags by dendritic cells (DCs) or B cells. DCs, but not B cells, efficiently triggered intra- and extracellular thiol expression in T cells with corresponding Ag specificity. After interaction with DCs, the Ag-specific T cells acquired the capacity to neutralize exogenous oxygen radicals and resisted ROS-induced apoptosis. Our results imply that DCs provide Ag-specific T cells with antioxidative thiols during Ag presentation, which suggests a novel aspect of DC/T cell cross-talk of relevance to the maintenance of specific immunity in inflamed or infected tissue.  相似文献   

10.
Granulosa Cells (GCs) are sensitive to excessive production of reactive oxygen species (ROS). Quercetin (QUR) is a free radical scavenger which can alleviate oxidative stress through nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) pathway and thioredoxin (Trx) system. We aimed to explore the probable protective role of QUR on cultured human GCs treated with hydrogen peroxide (H2O2) as an inducer of oxidative stress. MTT assay was applied for evaluating the cell cytotoxicity of QUR and H2O2. The rate of apoptotic cells and intracellular ROS generation were determined by Annexin V-FITC/PI staining and 2′-7′-dichlorodihydro?uorescein diacetate ?uorescent probes (DCFH-DA), respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blot analysis were used to evaluate the gene and protein expression of Nrf2 and kelch-like ech-associated protein 1 (Keap1)1. The Nrf2 and Trx activities were measured by Enzyme-linked Immunosorbent Assay (ELISA). The results indicated that QUR pretreatment can decrease ROS production and apoptosis induced by H2O2. In addition, QUR increased Nrf2 gene and protein expression, as well as its nuclear translocation. Moreover, in QUR-treated group, a lower level of Keap1 protein was observed, which was not reported as significant. The results also indicated a significant correlation between the expression of Nrf2 and Keap1 in QUR-treated group. Further, QUR protected GCs from oxidative stress by increasing Trx gene expression and activity. This study suggests that QUR as a supplementary factor may protect GCs from oxidative stress in diseases related to this condition.  相似文献   

11.
Glutathione protects Lactococcus lactis against oxidative stress   总被引:2,自引:0,他引:2  
Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to approximately 60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supplemented with glutathione showed significantly increased resistance (up to fivefold increased resistance) to treatment with H2O2 compared to the resistance of cells without intracellular glutathione. The resistance to H2O2 treatment was found to be dependent on the accumulation of glutathione in 16 strains of L. lactis tested. We propose that by taking up glutathione, L. lactis might activate a glutathione-glutathione peroxidase-glutathione reductase system in stationary-phase cells, which catalyzes the reduction of H2O2. Glutathione reductase, which reduces oxidized glutathione, was detectable in most strains of L. lactis, but the activities of different strains were very variable. In general, the glutathione reductase activities of L. lactis subsp. lactis are higher than those of L. lactis subsp. cremoris, and the activities were much higher when strains were grown aerobically. In addition, glutathione peroxidase is detectable in strain SK11, and the level was fivefold greater when the organism was grown aerobically than when the organism was grown anaerobically. Therefore, the presence of glutathione in L. lactis could result in greater stability under storage conditions and quicker growth upon inoculation, two important attributes of successful starter cultures.  相似文献   

12.
Acetaminophen protects human erythrocytes against oxidative stress   总被引:1,自引:0,他引:1  
Acetaminophen protects human erythrocytes against various modes of oxidative stress. Protection against ozone-induced damage can be explained by a direct scavenging reaction between the drug and ozone. With t-butylhydroperoxide acetaminophen appeared to be an effective scavenger of radicals, generated in secondary reactions. The protection by acetaminophen against t-butylhydroperoxide- and hydrogen peroxide-induced lipid peroxidation and K+-leakage can be explained along these lines. In all cases the protective effect of acetaminophen was attended with covalent binding of acetaminophen to membrane proteins.  相似文献   

13.
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.  相似文献   

14.
Accurate flow of genetic information from DNA to protein requires faithful translation. An increased level of translational errors (mistranslation) has therefore been widely considered harmful to cells. Here we demonstrate that surprisingly, moderate levels of mistranslation indeed increase tolerance to oxidative stress in Escherichia coli. Our RNA sequencing analyses revealed that two antioxidant genes katE and osmC, both controlled by the general stress response activator RpoS, were upregulated by a ribosomal error-prone mutation. Mistranslation-induced tolerance to hydrogen peroxide required rpoS, katE and osmC. We further show that both translational and post-translational regulation of RpoS contribute to peroxide tolerance in the error-prone strain, and a small RNA DsrA, which controls translation of RpoS, is critical for the improved tolerance to oxidative stress through mistranslation. Our work thus challenges the prevailing view that mistranslation is always detrimental, and provides a mechanism by which mistranslation benefits bacteria under stress conditions.  相似文献   

15.
16.
17.
Acetone may induce oxidative stress leading to disturbance of the biochemical and physiological functions of red blood cells (RBCs) thereby affecting membrane integrity. Vitamin E (vit E) is believed to function as an antioxidant in vivo protecting membranes from lipid peroxidation. The aim of the present study was the evaluation of possible protective effects of vit E treatment against acetone-induced oxidative stress in rat RBCs. Thirty healthy male Wistar albino rats, weighing 200–230 g and averaging 12 weeks old were randomly allotted into one of three experimental groups: Control (A), acetone-treated (B) and acetone + vit E-treated groups (C), each containing ten animals. Group A received only drinking water. Acetone, 5% (v/v), was given with drinking water to B and C groups. In addition, C group received vit E dose of 200 mg/kg/day i.m. The experiment continued for 10 days. At the end of the 10th day, the blood samples were obtained for biochemical and morphological investigation. Acetone treatment resulted in RBC membrane destruction and hemolysis, increased thiobarbituric acid reactive substance (TBARS) levels in plasma and RBC, and decreased RBC vit E levels. Vit E treatment decreased elevated TBARS levels in plasma and RBC and also increased reduced RBC vit E levels, and prevented RBC membrane destruction and hemolysis. In conclusion, vit E treatment appears to be beneficial in preventing acetone-induced oxidative RBC damage, and therefore, it can improve RBC rheology.  相似文献   

18.
The present study investigated oxidative damage and neuroprotective effect of the antiparkinsonian drug, L-deprenyl in neuronal death produced by intranigral infusion of a potent mitochondrial complex-I inhibitor, rotenone in rats. Unilateral stereotaxic intranigral infusion of rotenone caused significant decrease of striatal dopamine levels as measured employing HPLC-electrochemistry, and loss of tyrosine hydroxylase immunoreactivity in the perikarya of ipsilateral substantia nigra (SN) neurons and their terminals in the striatum. Rotenone-induced increases in the salicylate hydroxylation products, 2,3- and 2,5-dihydroxybenzoic acid indicators of hydroxyl radials in mitochondrial P2 fraction were dose-dependently attenuated by L-deprenyl. L-deprenyl (0.1-10mg/kg; i.p.) treatment dose-dependently attenuated rotenone-induced reductions in complex-I activity and glutathione (GSH) levels in the SN, tyrosine hydroxylase immunoreactivity in the striatum or SN as well as striatal dopamine. Amphetamine-induced stereotypic rotations in these rats were also significantly inhibited by deprenyl administration. The rotenone-induced elevated activities of cytosolic antioxidant enzymes superoxide dismutase and catalase showed further significant increase following L-deprenyl. Our findings suggest that unilateral intranigral infusion of rotenone reproduces neurochemical, neuropathological and behavioral features of PD in rats and L-deprenyl can rescue the dopaminergic neurons from rotenone-mediated neurodegeneration in them. These results not only establish oxidative stress as one of the major causative factors underlying dopaminergic neurodegeneration as observed in Parkinson's disease, but also support the view that deprenyl is a potent free radical scavenger and an antioxidant.  相似文献   

19.
RNA-Seq and gene set enrichment anylysis revealed that ovarian cancer associated fibroblasts (CAFs) are mitotically active compared with normal fibroblasts (NFs). Cellular senescence is observed in CAFs treated with H2O2 as shown by elevated SA-β-gal activity and p21 (WAF1/Cip1) protein levels. Reactive oxygen species (ROS) production and p21 (WAF1/Cip1) elevation may account for H2O2-induced CAFs cell cycle arrest in S phase. Blockage of autophagy can increase ROS production in CAFs, leading to cell cycle arrest in S phase, cell proliferation inhibition and enhanced sensitivity to H2O2-induced cell death. ROS scavenger NAC can reduce ROS production and thus restore cell viability. Lactate dehydrogenase A (LDHA), monocarboxylic acid transporter 4 (MCT4) and superoxide dismutase 2 (SOD2) were up-regulated in CAFs compared with NFs. There was relatively high lactate content in CAFs than in NFs. Blockage of autophagy decreased LDHA, MCT4 and SOD2 protein levels in CAFs that might enhance ROS production. Blockage of autophagy can sensitize CAFs to chemotherapeutic drug cisplatin, implicating that autophagy might possess clinical utility as an attractive target for ovarian cancer treatment in the future.  相似文献   

20.
过氧化氢预处理对抗氧化应激诱导的PC12细胞凋亡   总被引:1,自引:0,他引:1  
Tang XQ  Chen J  Tang EH  Feng JQ  Chen PX 《生理学报》2005,57(2):211-216
氧化应激可明显地诱导细胞凋亡。本研究旨在探讨H2O2预处理能否对H2O2诱导的PC12细胞凋亡生产保护作用及ATP敏感性K^ (ATP-sensitive potassinm,KATP)通道在其中的作用。采用PI染色流式细胞仪(flow cytometry, FCM)检测PC12细胞凋亡。结果表明,经10μmol/L H2O2预处理90min的PC12细胞,分别在20、30、50和100μmol/L H2O2作用24h后,其细胞凋亡率明显下降,与未经H2O2的预处理的PC12细胞相比,差异极显著(P<0.01),表明H2O2预处理对H2O2诱导PC12细胞凋亡具有保护作用。用10μmol/L的KATP通道激动齐pinacidil(Pin)可显著减少30和50μmol/L H2O2诱导的PC12细胞凋亡,10μmol/L的KATP通道拮抗齐glybenclamide(Gly)则可显著地抑制甚至取消KATP通道激动剂Pin对H2O3诱导PC12细胞凋亡的保护作用,但并不影响H2O2预处理对H2O2诱导PC12细胞凋亡的保护作用;然而,当联合应用H2O2预处理与Pin时,对PC12细胞凋亡的保护作用显大于各自的细胞凋亡作用。提示KATP通道开放不仅对H2O2诱导PC12细胞凋亡具有保护作用,而且与H2O2预处理一起产生抗PC12细胞凋亡的协同作用。但KATP通道开放可能不参与H2O2预处理的适应性保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号