首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The conformational properties of the tetrapeptide Ser1-Pro2-Phe3-Arg4, the C-terminal fragment of the nonapeptide hormone bradykinin, have been studied by circular dichroism and two-dimensional NMR techniques. Measurements of coupling constants, NH temperature dependence rates and nuclear Overhauser effects (performed with rotating frame nuclear Overhauser spectroscopy, ROESY) in H2O and CD3OH/D2O (80/20, v/v) reveal different conformations in the corresponding solvent. In aqueous solution the molecule exists in a random conformation or as an average of several conformations in rapid exchange. In CD3OH/D2O, however, the conformation is well-defined. The backbone of the peptide is extended, and the side-chains of Phe3 and Arg4 exhibit unusual rigidity for a peptide of this size. Evidently, the secondary structure is stabilized by a charge interaction between the guanidino group of Arg4 and the terminal carboxyl group, since experiments at various pH's show clearly that the definition of conformation decreases strongly upon protonation of the carboxyl function. A NH3 +(Ser1)-COO?(Arg4) salt bridge, as well as any form of turn stabilized by hydrogen bonds can be ruled out with certainty.  相似文献   

2.
The role of charged groups of the nonapeptide bradykinin in stabilization of its spatial structure in dimethyl sulfoxide solution was investigated. The signal assignment in the 1H-NMR spectra was achieved by means of two dimensional correlated spectroscopy (COSY) and nuclear Overhauser enhancement spectroscopy (NOESY). The changes in the NH and C alpha H proton chemical shifts of the Arg1 and Arg9 residues, variations both in temperature coefficients of chemical shifts of NH-resonances and coupling constants, as well as the appearance of additional NOE cross-peaks in NOESY spectra for d alpha N and d beta N 1H-1H distances were revealed by comparing the NMR spectra for two states--with the protonated C-terminal carboxyl group and deprotonated one. The experimental results are in agreement with the assumption that the conformation of the peptide in (CD3)2SO is stabilized by electrostatic interaction between the oppositely charged N- and C-terminal groups. The conformation with deprotonated alpha-carboxyl group is characterized by two beta-turns in the sequences Pro2-Pro-Gly-Phe5 and Ser6-Pro-Phe-Arg9.  相似文献   

3.
The solution conformation of tubulin-beta(422-434)-NH2 (YQQYQDATADEQG-NH2) and its Nac-DATADEQG-NH2 fragment has been studied by two-dimensional 1H-nmr spectroscopy in CD3OH/H2O (90/10 v/v) at neutral and low pH. The 13 amino acid peptide is a segment of the C-terminal region of tubulin, and is directly involved in the selective binding site with microtubule-associated proteins MAP-2 and the tau protein. Based on correlated spectroscopy, total correlation spectroscopy, and rotating frame nuclear Overhauser effect spectroscopy experiments, a complete assignment of all proton resonances was achieved, and the conformation of the backbone could be deduced from coupling constants, NH temperature coefficients, and nuclear Overhauser effects. The spectroscopic evidence indicates that the T8-Q12 section of both molecules forms one complete alpha-helical turn, stabilized by a NH (Q12)-C = O (T8) hydrogen bond. Furthermore, strong pH-dependent backfolding of the E11 side chain to its own NH proton was found. In addition, close proximity between the aromatic side chains of Y1, Y4, and the alpha-helical part, resulting in some substantial chemical shift changes when comparing the entire 13-mer with the octamer, could be explained in terms of a nonclassical kink in the DATA section. The conformational space is dominated by extended structures and the nonextended conformers are only a minor, yet spectroscopically clearly discernible entity. The presence of the alpha-helical region at the C-terminus of the 13-mer is important because binding studies of this peptide with MAP-2 indicate that the D10-E11-Q12-G13 fragment is critical for the binding interaction.  相似文献   

4.
The Aib-D Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III β-turns. The occurrence of prime turns facilitates the formation of β-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-DAla-Leu-Phe-Val-OMe (1) has been previously shown to form a β-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx=DAla, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD3OH) and non-hydrogen bonding (CDCl3) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-DAla-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl3 and β-hairpin conformations in CD3 OH. The β-turn conformations (type-I'/III) stabilized by intramolecular 4→1 hydrogen bonds are observed for the peptide Boc-Aib-D Ala-NHMe (4) and Boc-Aib-Aib-NHMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4→1 hydrogen bonds. The peptide Boc-Val-Aib-DAla-Leu-NHMe (3) adopts a novel α-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4→1 and one 5→1). The Aib-DAla segment adopts a type-I' β-turn conformation. The observation of an NOE between Val (1) NH?HNCH3 (5) in CD3OH suggests, that the solid state conformation is maintained in methanol solutions.  相似文献   

5.
A Otter  G Kotovych  P G Scott 《Biochemistry》1989,28(20):8003-8010
The solution conformation of the type I collagen alpha-1 chain N-telopeptide has been studied by CD and 1H NMR spectroscopy at 600 MHz in CD3OH/H2O (60/40 v/v) and H2O solutions. The 19 amino acids form the N-terminal end of the alpha-1 polypeptide chain. By the combined application of several two-dimensional, phase-sensitive NMR techniques (COSY, RELAY, ROESY), a complete assignment of all proton resonances was achieved, and the conformation of the backbone could be established on the basis of the coupling constant and NOE data. In CD3OH/H2O solutions the spectroscopic evidence clearly indicates that two sections of the molecule (pE1-Y6 and T11-M19) are extended and that the D7-S10 segment forms a beta-turn, stabilized by a hydrogen bond between NH(S10) and CO(D7). The data suggest that the turn is of the type I kind (minor) and that it coexists with an extended structure (major conformer). Interactions between the two extended parts of the peptide were not observed, thus excluding the existence of a beta-sheet. In H2O solution the conformation is significantly different, with no beta-turn, but a completely extended structure is observed.  相似文献   

6.
The conformational properties of the pentapeptide Ser-Phe-Leu-Leu-Arg (P5), a human thrombin receptor-derived sequence forming part of a tethered ligand which activates the thrombin receptor, and its more active amide derivative Ser-Phe-Leu-Leu-Arg-NH2 (P5-NH2), have been studied by proton NMR spectroscopy in dimethylsulfoxide. Measurements of nuclear Overhauser effects, performed using two-dimensional rotating frame nuclear Overhauser (ROESY) and one-dimensional nuclear Overhauser enhancement (NOE) spectroscopy, revealed that P5 exists mainly in an extended conformation. However, proton–proton 1D-NOEs between Phe CαH and Ser CαH, Leu3 CαH and Leu3 NH, and Leu4 CαH and Leu4 NH, as well as between the Ser and Arg sidechains, also implicated a minor conformer for P5 having a curved backbone and a near-cyclic structure. In contrast to P5, measurements of NOEs and ROEs for P5-NH2 revealed a more stabilized cyclic structure which may account for its higher biological potency. Thus strong interresidue sequential NH (i)–NH (i + 1) interactions, as well as C-terminal carboxamide to N-terminal side-chain interactions, i.e., Arg CONH2 to Phe ring and Arg CONH2 to Ser $C_\alpha /C_{\beta \beta '} $ , observed at lower levels of the ROESY spectrum, supported a curved backbone structure for SFLLR-NH2. Since the higher potaency P5-NH2 analogue adopts predominantly a cyclic structure, a cyclic bioactive conformation for thrombin receptor agonist peptides is suggested.  相似文献   

7.
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (delta Z-Phe) at position 2 or 3, Boc-Leu-Ala-delta Z-Phe-Leu-OMe (1) and Boc-Leu-delta Z-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (Ci alpha H----Ni+1H and NiH----Ni+1H) between backbone protons. The simultaneous observation of "mutually exclusive" n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-delta Z-Phe- Type II beta-turn structure and a second species with delta Z-Phe adopting a partially extended conformation with psi values of +/- 100 degrees to +/- 150 degrees. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive beta-turn structure for the -Leu-delta Z-Phe-Ala- segment and an almost completely extended conformation.  相似文献   

8.
Adriamycin is an anthracycline anticancer drug used widely for solid tumors in spite of its adverse side effects. The solution structure of 2:1 adriamycin-d-(CGATCG)(2) complex has been studied by restrained molecular dynamics simulations. The restraint data set consists of several intramolecular and intermolecular nuclear Overhauser enhancement cross-peaks obtained from two-dimensional nuclear magnetic resonance spectroscopy data. The drug is found to intercalate between CG and GC base pairs at two d-CpG sites. The drug-DNA complex is stabilized via specific hydrogen bonding and van der Waal's interactions involving 4OCH(3), O5, 6OH, and NH(3)(+) moiety of daunosamine sugar, and rings A protons. The O-glycosidic bond C7-O7-C1'-C2' lies in the range 138 degrees -160 degrees during the course of simulations. The O6-H6...O5 hydrogen bond is stable while O11-H11...O12 hydrogen bond is not favored. The intercalating base pairs are buckled and minor groove is wider in the complex. The phosphate on one strand at intercalation site C1pG2 is in B(I) conformation and the phosphates directly lying on opposite strand is in B(II) conformation. The phosphorus on adjacent site G2pA3 is in B(II) conformation and hence a distinct pattern of B(I) and B(II) conformations is induced and stabilized. The role of various functional groups by which the molecular action is mediated has been discussed and correlated to the available biochemical evidence.  相似文献   

9.
IR spectra (1600-1800 and 3000-3650 cm-1) of lincomycin base solutions in inert (CCl4 and C2Cl4), proton acceptor (dioxane, dimethylsulfoxide and triethyl amine) and proton donor (CHCl3, CD3OD and D2O) solvents were studied. Analysis of the concentration and temperature changes in the spectra revealed that association in lincomycin in the inert solvents was due to intramolecular hydrogen linkage involving amide and hydroxyl groups. Disintegration of the associates after the solution dilution and temperature rise was accompanied by formation of intramolecular bonds stabilizing the stable conformation structure of the lincomycin molecule. The following hydrogen linkage in the conformation was realized: NH...N (band v NH...N at 3340 cm-1), OH...O involving the hydroxyl at C-7 and O atoms in the D-galactose ring (band v OH...O at 3548 cm-1), a chain of the hydrogen bonds OH...OH...OH in the lincomycin carbohydrate moiety (band v OH...O at 3593 cm-1 and v OH of the end hydroxyl group at 3625 cm-1). Bonds NH and C-O of the amide group were located in transconformation. Group C-O did not participate in the intramolecular hydrogen linkage.  相似文献   

10.
An octapeptide containing a central -Aib-Gly- segment capable of adopting beta-turn conformations compatible with both hairpin (beta(II') or beta(I')) and helical (beta(I)) structures has been designed. The effect of solvent on the conformation of the peptide Boc-Leu-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VIII; Boc: t-butyloxycarbonyl; OMe: methyl ester) has been investigated by NMR and CD spectroscopy. Peptide VIII adopts a well-defined beta-hairpin conformation in solvents capable of hydrogen bonding like (CD(3))(2)SO and CD(3)OH. In solvents that have a lower tendency to interact with backbone peptide groups, like CDCl(3) and CD(3)CN, helical conformations predominate. Nuclear Overhauser effects between the backbone protons and solvent shielding of NH groups involved in cross-strand hydrogen bonding, backbone chemical shifts, and vicinal coupling constants provide further support for the conformational assignments in different solvents. Truncated peptides Boc-Val-Val-Aib-Gly-Leu-Val-Val-OMe (VII), Boc-Val-Val-Aib-Gly-Leu-Val-OMe (VI), and Boc-Val-Aib-Gly-Leu-OMe (IV) were studied in CDCl(3) and (CD(3))(2)SO by 500 MHz (1)H-NMR spectroscopy. Peptides IV and VI show no evidence for hairpin conformation in both the solvents. The three truncated peptides show a well-defined helical conformation in CDCl(3). In (CD(3))(2)SO, peptide VII adopts a beta-hairpin conformation. The results establish that peptides may be designed, which are poised to undergo a dramatic conformational transition.  相似文献   

11.
V S Chauhan  K Uma  P Kaur  P Balaram 《Biopolymers》1989,28(3):763-771
The conformation of an acyclic dehydrophenylalanine (delta Z-Phe) containing hexapeptide, Boc-Phe-delta Z-Phe-Val-Phe-delta Z-Phe-Val-OMe, has been investigated in CDCl3 and (CD3)2SO by 270-MHz 1H-nmr. Studies of NH group solvent accessibility and observation of interresidue nuclear Overhauser effects (NOEs) suggest a significant solvent-dependent conformational variability. In CDCl3, a population of folded helical conformations is supported by the inaccessibility to solvent of the NH groups of residues 3-6 and the detection of several NiH----Ni + 1H NOEs. Evidence is also obtained for conformational heterogeneity from the detection of some Ci alpha H----Ni + 1H NOEs characteristic of extended strands. In (CD3)2SO, the peptide largely favors an extended conformation, characterized by five solvent-exposed NH groups and successive Ci alpha H----Ni + 1H NOEs for the L-residues and Ci beta H----Ni + 1H NOEs for the delta Z-Phe residues. The results suggest that delta Z-Phe residues do not provide compelling conformational constraints.  相似文献   

12.
The conformational properties of the pentapeptide Ser-Phe-Leu-Leu-Arg (P5), a human thrombin receptor-derived sequence forming part of a tethered ligand which activates the thrombin receptor, and its more active amide derivative Ser-Phe-Leu-Leu-Arg-NH2 (P5-NH2), have been studied by proton NMR spectroscopy in dimethylsulfoxide. Measurements of nuclear Overhauser effects, performed using two-dimensional rotating frame nuclear Overhauser (ROESY) and one-dimensional nuclear Overhauser enhancement (NOE) spectroscopy, revealed that P5 exists mainly in an extended conformation. However, proton–proton 1D-NOEs between Phe CH and Ser CH, Leu3 CH and Leu3 NH, and Leu4 CH and Leu4 NH, as well as between the Ser and Arg sidechains, also implicated a minor conformer for P5 having a curved backbone and a near-cyclic structure. In contrast to P5, measurements of NOEs and ROEs for P5-NH2 revealed a more stabilized cyclic structure which may account for its higher biological potency. Thus strong interresidue sequential NH (i)–NH (i + 1) interactions, as well as C-terminal carboxamide to N-terminal side-chain interactions, i.e., Arg CONH2 to Phe ring and Arg CONH2 to Ser , observed at lower levels of the ROESY spectrum, supported a curved backbone structure for SFLLR-NH2. Since the higher potaency P5-NH2 analogue adopts predominantly a cyclic structure, a cyclic bioactive conformation for thrombin receptor agonist peptides is suggested.  相似文献   

13.
The structural requirements for the binding of dynorphin to the kappa-opioid receptor are of profound clinical interest in the search for a powerful nonaddictive analgesic. These requirements are thought to be met by the membrane-mediated conformation of the opioid peptide dynorphin A-(1-13)-peptide, Tyr1-Gly2-Gly3-Phe4-Leu5-Arg6-Arg7-Ile8-Arg9-Pro10- Lys11-Leu12-Lys13. Schwyzer has proposed an essentially alpha-helical membrane-mediated conformation of the 13 amino acid peptide [Schwyzer, R. (1986) Biochemistry 25, 4281-4286]. In the present study, circular dichroism (CD) studies on dynorphin A-(1-13)-peptide bound to an anionic phospholipid signified negligible helical content of the peptide. CD studies also demonstrated that the aqueous-membraneous interphase may be mimicked by methanol. The 500- and 620-MHz 1H nuclear magnetic resonance (NMR) spectra of dynorphin A-(1-13)-peptide in methanolic solution were sequence-specifically assigned with the aid of correlated spectroscopy (COSY), double-quantum filtered phase-sensitive COSY (DQF-COSY), relayed COSY (RELAY), and nuclear Overhauser enhancement spectroscopy (NOESY). 2-D CAMELSPIN/ROESY experiments indicated that at least the part of the molecule from Arg7 to Arg9 was in an extended or beta-strand conformation, which agreed with deuterium-exchange and temperature-dependence studies of the amide protons and analysis of the vicinal spin-spin coupling constants 3JHN alpha. The results clearly demonstrated the absence of extensive alpha-helix formation. chi 1 rotamer analysis of the 3J alpha beta demonstrated no preferred side-chain conformations.  相似文献   

14.
The conformation of the acyclic biscystine peptide S,S'-bis(Boc-Cys-Ala-OMe) has been studied in the solid state by x-ray diffraction, and in solution by 1H- and 13C-nmr, ir, and CD methods. The peptide molecule has a twofold rotation symmetry and adopts an intramolecular antiparallel beta-sheet structure in the solid state. The two antiparallel extended strands are stabilized by two hydrogen bonds between the Boc CO and Ala NH groups [N...O 2.964 (3) A, O...HN 2.11 (3) A, and NH...O angle 162 (3) degrees]. The disulfide bridge has a right-handed conformation with the torsion angle C beta SSC beta = 95.8 (2) degrees. In solution the presence of a twofold rotation symmetry in the molecule is evident from the 1H- and 13C-nmr spectra. 1H-nmr studies, using solvent and temperature dependencies of NH chemical shifts, paramagnetic radical induced line broadening, and rate of deuterium-hydrogen exchange effects on NH resonances, suggest that Ala NH is solvent shielded and intramolecularly hydrogen bonded in CDCl3 and in (CD3)2SO. Nuclear Overhauser effects observed between Cys C alpha H and Ala NH protons and ir studies provide evidence of the occurrence of antiparallel beta-sheet structure in these solvents. The CD spectra of the peptide in organic solvents are characteristic of those observed for cystine peptides that have been shown to adopt antiparallel beta-sheet structures.  相似文献   

15.
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation.  相似文献   

16.
The dodecapepetide sequence R-L-C-R-I-V-V-I-R-V-C-R with a disulfide bridge between the cysteine residues found in bovine neutrophils was synthesized by solid-phase procedures. Its antimicrobial activity against oral microorganisms such as Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans, and Streptococcus gordonii was examined, and its structural features were examined by CD and determined by two-dimensional (2D) nmr. The strains P. gingivalis (W50 and 381), A. actinomycetemcomitans (Y4 and 67), S. gordonii (DL1), and S. mutans (GS5) are found to be highly sensitive to this peptide at 2-2.5 microM concentrations, suggesting that the dodecapeptide is a potent antibiotic for oral pathogens. The weak negative n-sigma* band observed at approximately 265-270 nm in the CD spectra of this peptide provides evidence for the presence of a disulfide bridge. The negative n-pi* band at approximately 200 nm and the positive pi-pi* band at 185 nm suggest a folded structure for this peptide. The negative n-pi* shifts from 200 to 206 nm with an increase in intensity in dipalmitoylphosphotidylcholine vesicles, suggesting that the peptide might associate to form higher order aggregates in lipid medium. The assignment of backbone and side-chain proton resonances has been accomplished by the combined analysis of 2D total correlated and nuclear Overhauser effect spectroscopy. The temperature dependence of amide NH chemical shifts and (1)H-(2)H exchange effect on amide NH resonances indicate the involvement of amide NH groups of Cys3, Ile5, Ile8, Val10, and Arg12 in intramolecular hydrogen bonding. The coupling constant (J(NH-C(alpha)H)) values, the set of medium-, short-, and long-range nuclear Overhauser effects, and the results of restrained structure calculation using the distance geometry algorithm for nmr applications provide evidence for a folded, loop-like structure with a type I (III) beta-turn involving Ile5, Val6, Val7, and Ile8, and two antiparallel beta-strands involving the N-terminal Arg1, Leu2, Cys3, and Val4 and the C-terminal Arg9, Val10, Cys11, and Arg12 residues. The structure of the dodecapeptide mimics the amphiphilic structure of large 30-35 residue defensins and the peptide appears to exhibit similar antimicrobial potency.  相似文献   

17.
W M Zuk  T B Freedman  L A Nafie 《Biopolymers》1989,28(11):2025-2044
The CH-stretching vibrational CD (VCD) spectra of glycyl-L-alanine, L-alanylglycine, and L-alanyl-L-alanine have been studied at neutral, high, and low pH in D2O solution. The intense positive VCD band attributed to the C alpha H stretch of the alanyl residue in glycyl-L-alanine at neutral pH is absent in L-alanylglycine. In contrast to the VCD spectra of L-alanine, the positive methine-stretching VCD band in glycyl-L-alanine and L-alanyl-L-alanine is still present at pH 2. Based on the ring current mechanism, the VCD spectra are consistent with the presence of a five-membered CO...HN intramolecular hydrogen-bonded ring between the C-terminal carboxylate and peptide NH groups at neutral and high pH; and a seven-membered COH...O = C hydrogen-bonded ring between the C-terminal carboxyl OH and peptide C = O groups at low pH. In the N-terminal alanyl residue, the peptide C = O group is hydrogen bonded to the NH trans to the methine bond. The CH-stretching VCD spectra of L-alanyl-L-alanyl-L-alanine at neutral pH are consistent with two intramolecularly hydrogen-bonded conformations for the central alanyl residue.  相似文献   

18.
The conformational analysis of two synthetic octapeptides, Boc-Leu-Val-Val-D-Pro-L-Ala-Leu-Val-Val-OMe (1) and Boc-Leu-Val-Val-D-Pro-D-Ala-Leu-Val-Val-OMe (2) has been carried out in order to investigate the effect of beta-turn stereochemistry on designed beta-hairpin structures. Five hundred megahertz (1)H NMR studies establish that both peptides 1 and 2 adopt predominantly beta-hairpin conformations in methanol solution. Specific nuclear Overhauser effects provide evidence for a type II' beta-turn conformation for the D-Pro-L-Ala segment in 1, while the NMR data suggest that the type I' D-Pro-D-Ala beta-turn conformation predominates in peptide 2. Evidence for a minor conformation in peptide 2, in slow exchange on the NMR time scale, is also presented. Interstrand registry is demonstrated in both peptides 1 and 2. The crystal structure of 1 reveals two independent molecules in the crystallographic asymmetric unit, both of which adopt beta-hairpin conformations nucleated by D-Pro-L-Ala type II' beta-turns and are stabilized by three cross-strand hydrogen bonds. CD spectra for peptides 1 and 2 show marked differences, presumably as a consequence of the superposition of spectral bands arising from both beta-turn and beta-strand conformations.  相似文献   

19.
CD and nmr studies have been carried out on aqueous trifluoroethanol (TFE) solutions of bradykinin (BK) and a bradykinin antagonist. The CD results exhibit a striking effect of TFE on the spectra of BK, with sequence Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, and the BK antagonist, with sequence D -Arg-Arg-Pro-Hyp-Gly-Thi-D -Ser-D -Cpg-Cpg-Arg [where Hyp is 4-hydroxy-L -proline; Thi refers to β-(2-thienyl)-L -alanine and Cpg refers to α-cyclopentylglycine]. The effect of increasing concentration of TFE in water on the difference ellipticity at 222 nm was examined and showed that BK may be a mixture of at least two different conformers, one of which largely forms when the TFE concentration is increased beyond 80%. The linear extrapolation of 100% of the difference ellipticity of BK at low TFE concentrations yields a value in agreement with that shown by the BK antagonist, indicating that the conformation of BK at the lower TFE concentrations is similar to that of the BK antagonist. The conformational analysis was carried out using both one-dimensional and two-dimensional 1H-nmr techniques. The total correlation spectroscopy (TOCSY) spectrum of BK in a 60/40% (v/v) TFE/H2O solution at 10°C and a nuclear Overhauser effect spectroscopy (NOESY) spectrum that shows only sequential Hα(i) – NH(i + 1) or the Hα(i) – Hδδ′(i + 1) NOEs indicate that the majority of the molecules adopt an all-trans extended conformation. The TOCSY for BK in the 95/5% (v/v) TFE/H2O solution shows that there are two major conformations in the solution with about equal population. The NOESY experiment shows two new important cross peaks for one conformation, namely Pro2(α)-Pro3 (α) and the Pro2(α)-Gly4(NH), indicating a cis Pro2-Pro3 bond and a type VI β-turn between residues Arg1 and Gly4 involving cis proline at position 3, respectively. The low temperature coefficient of Gly4 for this conformation suggests the presence of an intramolecular hydrogen bond, therefore a type VIa β-turn is present. The other conformation is all trans and extended. The BK antafonist shows difference CD spectra in TFE solutions referred to H2O that are superficially indicative of a β-bend. However, nmr speaks against this possibility, as only one set of peaks were observed in the TOCSY and NOESY experiments, indicating an all-trans extended confirmation over the range of TFE concentrations. The BK-antagonist CD data suggest that solvent perturbation of the CD of an extended confirmation perturbation of the optical activity of the thienyl moiety of the peptide since the CD spectrum of N-acetyl-β-thienyl-L -alanine N-methylamide is strongly perturbed by TFE. The present results again demonstrate the complementary relationship between CD and nmr. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Aspartic acid protease model peptides Z-Phe-Asp(COOH)-Thr-Gly-Ser-Ala-NHCy (1) and AdCO-Asp(COOH)-Val-Gly-NHBzl (3), and their aspartate anions (NEt4)[Z-Phe-Asp(COO-)-Thr-Gly-Ser-Ala-NHCy] (2) and (NEt4)[AdCO-Asp(COO-)-Val-Gly-NHBzl] (4), having an invariant primary sequence of the Asp-X(Thr,Ser)-Gly fragment, were synthesized and characterized by 1H-NMR, CD, and infrared (IR) spectroscopies. NMR structure analyses indicate that the Asp O(delta) atoms of the aspartate peptide 2 are intramolecularly hydrogen-bonded with Gly, Ser, Ala NH, and Ser OH, supporting the rigid beta-turn-like conformation in acetonitrile solution. The tripeptide in the aspartic acid 3 forms an inverse gamma-turn structure, which is converted to a beta-turn-like conformation because of the formation of the intramolecular NH . . . O- hydrogen bonds with the Asp O(delta) in 4. Such a conformational change is not detected between dipeptides AdCO-Asp(COOH)-Va-NHAd (5) and (NEt4)[AdCO-Asp(COO-)-Val-NHAd] (6). The pK(a) value of side-chain carboxylic acid (5.0) for 3 exhibits a lower shift (0.3 unit) from that of 5 in aqueous polyethyleneglycol lauryl ether micellar solution. NMR structure analyses for 3 in an aqueous micellar solution indicate that the preorganized turn structure, which readily forms the NH . . . O- hydrogen bonds, lowers the pK(a) value and that resulting hydrogen bonds stabilize the rigid conformation in the aspartate anion state. We found that the formation of the NH . . . O- hydrogen bonds involved in the hairpin turn is correlated with the protonation and deprotonation state of the Asp side chain in the conserved amino acid fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号