首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Various behavioral models and studies have provided evidence suggesting that male rat sexual behavior has rewarding and reinforcing properties. However, there is little information regarding the rewarding values of the different components of sexual behavior. Therefore, this study used a conditioned place preference (CPP) paradigm to address whether ejaculation and intromissions differ in their rewarding incentive values. We also addressed whether the differential rewarding values were dependent on prior sexual experience. Sexually naïve and experienced males received one pairing of either intromissions or ejaculation with one of the chambers in the CPP box. The amount of time spent in each chamber of the CPP apparatus after conditioning was then measured. Both sexually naïve and sexually experienced males formed a CPP for ejaculation, while only sexually naïve, and not sexually experienced, males formed a CPP for intromissions. Moreover, in sexually naïve males, multiple pairings of ejaculation with the designated chamber resulted in a CPP relative to the control chamber paired with display of intromissions. These data support the hypothesis that there is a hierarchy of rewarding sexual behavior, with ejaculation being the most rewarding component, and that the rewarding incentive value of other components of sexual behavior is dependent upon prior sexual experience.  相似文献   

4.
We tested the influence of illuminance and level of forager experience on nest orientation behavior of the social wasps Vespula vulgaris, Vespa crabro, and Dolichovespula saxonica in an artificial laboratory tunnel system. The number of wasps which oriented themselves chemically via a terrestrial trail or used visual orientation were determined at different illuminance levels for foragers which were naïve or experienced with the tunnel system. In V. vulgaris and D. saxonica, mainly the young and naïve foragers used the chemical trail for orientation in brightness. Experienced foragers used visual cues for nest orientation. In V. crabro, naïve and experienced foragers followed the chemical trail in a similar intensity. In darkness, when visual orientation was limited, the relative importance of the chemical trail increased dramatically in all species and all experience classes.  相似文献   

5.
Oxidative damage in the brain may lead to cognitive impairments in aged humans. Further, in age-associated neurodegenerative disease, oxidative damage may be exacerbated and associated with additional neuropathology. Epidemiological studies in humans show both positive and negative effects of the use of antioxidant supplements on healthy cognitive aging and on the risk of developing Alzheimer disease (AD). This contrasts with consistent behavioral improvements in aged rodent models. In a higher mammalian model system that naturally accumulates human-type pathology and cognitive decline (aged dogs), an antioxidant enriched diet leads to rapid learning improvements, memory improvements after prolonged treatment and cognitive maintenance. Cognitive benefits can be further enhanced by the addition of behavioral enrichment. In the brains of aged treated dogs, oxidative damage is reduced and there is some evidence of reduced AD-like neuropathology. In combination, antioxidants may be beneficial for promoting healthy brain aging and reducing the risk of neurodegenerative disease. Special issue article in honor of Dr. Akitne Mori.  相似文献   

6.
There is strong evidence supporting the deleterious effects of aging on learning and memory and behavioral parameters in normal mice. However, little is known about the Ames dwarf mouse, which has a Prop-1 gene mutation resulting in deficiencies in growth hormone, thyroid-stimulating hormone, and prolactin. These mice are much smaller and live significantly longer than their normal siblings. Using the elevated plus-maze, locomotor activity meters, and an inhibitory avoidance learning task, the present study compared Ames dwarf mice to their normal siblings. Results showed that Ames dwarf mice did not experience an age-related decline in locomotor activity when compared to their young counterparts. Furthermore, old dwarf mice did not differ from the young groups in inhibitory avoidance retention, while old normal animals performed more poorly than both young groups on this test. Elevated plus-maze behavior did not differ in the old normal versus dwarf groups, but the old groups did differ from the young. Results indicate that both old groups experienced a significant decline in anxiety with age. Taken together, these results indicate that multiple hormone deficiencies resulting from a lack of primary pituitary function have beneficial effects on cognitive function and locomotor behavior in advanced age. In fact, the Ames dwarf mouse may provide a model for studies of delayed mental as well as physical aging.  相似文献   

7.
Immunity promotes virulence evolution in a malaria model   总被引:2,自引:1,他引:1       下载免费PDF全文
Evolutionary models predict that host immunity will shape the evolution of parasite virulence. While some assumptions of these models have been tested, the actual evolutionary outcome of immune selection on virulence has not. Using the mouse malaria model, Plasmodium chabaudi, we experimentally tested whether immune pressure promotes the evolution of more virulent pathogens by evolving parasite lines in immunized and nonimmunized (“naïve”) mice using serial passage. We found that parasite lines evolved in immunized mice became more virulent to both naïve and immune mice than lines evolved in naïve mice. When these evolved lines were transmitted through mosquitoes, there was a general reduction in virulence across all lines. However, the immune-selected lines remained more virulent to naïve mice than the naïve-selected lines, though not to immunized mice. Thus, immune selection accelerated the rate of virulence evolution, rendering parasites more dangerous to naïve hosts. These results argue for further consideration of the evolutionary consequences for pathogen virulence of vaccination.  相似文献   

8.
During aging, some individuals are resilient to the decline of cognitive functions whereas others are vulnerable. These inter‐individual differences in memory abilities have been associated with differences in the rate of hippocampal neurogenesis measured in elderlies. Whether the maintenance of the functionality of neurons generated throughout adult life is linked to resilience to cognitive aging remains completely unexplored. Using the immediate early gene Zif268, we analyzed the activation of dentate granule neurons born in adult (3‐month‐old), middle‐aged (12‐month‐old), or senescent (18‐month‐old) rats (n = 96) in response to learning when animals reached 21 months of age. The activation of neurons born during the developmental period was also examined. We show that adult‐born neurons can survive up to 19 months and that neurons generated 4, 10, or 19 months before learning, but not developmentally born neurons, are activated in senescent rats with good learning abilities. In contrast, aged rats with bad learning abilities do not exhibit activity‐dependent regulation of newborn cells, whatever their birthdate. In conclusion, we propose that resilience to cognitive aging is associated with responsiveness of neurons born during adult life. These data add to our current knowledge by showing that the aging of memory abilities stems not only from the number but also from the responsiveness of adult‐born neurons.  相似文献   

9.
Prehension is essential for animal survival and fitness. It is involved in locomotion and feeding behavior and subject to physical and physiological constraints. Studies of prehension in primates have explored the importance of food properties and of the environment, but aging has rarely been studied although prehensile capacity may deteriorate with age in humans. To test the hypothesis that aging affects grasping abilities and to reveal possible behavioral adaptations to this, we quantified behavioral grasping strategies and pull strength in 10 young adult (2–3 yr old) and 10 aged (7–8 yr old) gray mouse lemurs (Microcebus murinus). We assessed grasping strategies in an experimental cage by quantifying grip types used to grasp static and mobile foods. We measured strength using a Kistler triaxial force platform. Our results show that 1) mobile and static foods affected individuals of different ages in similar ways; 2) older individuals used more mouth grasps than young ones; 3) aged individuals made twice as many attempts as young ones when grasping mobile food items but this difference was not significant; and 4) there were no differences in hand grip strength between age classes but young individuals showed a higher foot pull strength compared to old ones. These data suggest that the observed differences in behavior may be due to a decrease in foot grip strength, which in turn influences stability on narrow branches, forcing animals to use their hands to maintain stability and preventing them from using their hands for food-related tasks.  相似文献   

10.
Culturally supported accumulation (or ratcheting) of technological complexity is widely seen as characterizing hominin technology relative to that of the extant great apes, and thus as representing a threshold in cultural evolution. To explain this divide, we modeled the process of cultural accumulation of technology, which we defined as adding new actions to existing ones to create new functional combinations, based on a model for great ape tool use. The model shows that intraspecific and interspecific variation in the presence of simple and cumulative technology among extant orangutans and chimpanzees is largely due to variation in sociability, and hence opportunities for social learning. The model also suggests that the adoption of extensive allomaternal care (cooperative breeding) in early Pleistocene Homo, which led to an increase in sociability and to teaching, and hence increased efficiency of social learning, was enough to facilitate technological ratcheting. Hence, socioecological changes, rather than advances in cognitive abilities, can account for the cumulative cultural changes seen until the origin of the Acheulean. The consequent increase in the reliance on technology could have served as the pacemaker for increased cognitive abilities. Our results also suggest that a more important watershed in cultural evolution was the rise of donated culture (technology or concepts), in which technology or concepts was transferred to naïve individuals, allowing them to skip many learning steps, and specialization arose, which allowed individuals to learn only a subset of the population's skills.  相似文献   

11.
Early environment can have a major impact on development, with family life known to play an important role. Longitudinal studies can therefore help increase our understanding of variance in cognitive abilities in young animals, as well as over time. We followed 22 marmosets (11 male and 11 female) from infancy through to early adolescence. At 3 months old, the marmosets were trained to reliably touch a rewarded stimulus. At 5 months, behavior was observed within the natal group. At 9 months, the marmosets were given a visual discrimination task to assess learning ability. Mann–Whitney U tests found no sex or family size differences in number of errors at 3 or 9 months. While no significant relationships were found between behavior in the family and learning at 3 months, significant negative correlations were found between duration spent in locomotion and learning errors (p = .05), as well as between frequency of calm vocalizations and learning errors (p = .001) at 9 months. A U-shape curve was found between amount of social play and learning at 9 months. Positive family interactions, including moderate amounts of play, as well as calm individual behavior, may therefore be important in learning. This study sheds light on cognitive development in much younger marmosets than previously studied, and helps increase understanding of how individual differences in learning may arise.  相似文献   

12.
The role of the aged in human society has received much attention from gerontologists, and the notion of a social role for aged monkeys is common in primatology. Four hundred and fifty hours of focal animal data were collected on a sample of 40 adult female Japanese monkeys. The animals are semi-free ranging and of known age. These data were analyzed in an attempt to determine whether old females constitute a behaviorally distinct subgroup. Very little behavioral variation based on age could be documented. Where age related variation occurs, it is better explained as a function of youth, rather than as a function of old age. The expectation that old monkeys will occupy a distinct social role because of their advanced age is discussed in terms of biological versus social aging, human versus non human aging, the evolution of behavioral change in old age, and the application of the social role concept to old female monkeys. It is concluded that there is little evidence that the behavior of the aged females differs significantly from that of the other adult females, and it does not appear that the fact of biological aging creates any radically different social situation which would cue the onset of specific role behavior for aged animals.  相似文献   

13.
We describe the behavior of an unhabituated population of chimpanzees in the Goualougo Triangle, Republic of Congo. We encountered chimpanzee parties on 218 occasions during two field seasons (February 1999–December 1999, June 2000–June 2001). Overall contact rate was 0.63 contacts per day in the field (n = 347). During the first 5 min of observation, we recorded individual responses as curious, ignore, hide, or depart. In contrast to other unhabituated chimpanzees, curiosity was the most common response (84%) of individuals in the Goualougo Triangle. However, the responses were deeply integrated in the group's reaction to our arrival and behavior throughout an encounter. Based on the behavior of the majority of individuals in a group, we categorized entire contact events as naïve, ignore, nervous, or depart. Naïve contacts accounted for 69% of all encounters. Other contacts types occurred much less frequently: nervous (12%), depart (11%), ignore (8%). Naïve contacts were characterized by chimpanzees that continued to exhibit curiosity throughout the encounter, the arrival of other individuals at the contact location, and relatively prolonged contact with observers (average duration: 136 min). It is likely that the high frequency of curious responses and naïve contacts are due to the remote location of the Goualougo Triangle and the chimpanzees's lack of experience with humans. Documentation of this naïve phenomenon has been successfully used to lobby for the protection of the chimpanzees and their habitat.  相似文献   

14.
Dietary restriction extends lifespan in a wide variety of animals, including Drosophila, but its relationship to functional and cognitive aging is unclear. Here, we study the effects of dietary yeast content on fly performance in an aversive learning task (association between odor and mechanical shock). Learning performance declined at old age, but 50‐day‐old dietary‐restricted flies learned as poorly as equal‐aged flies maintained on yeast‐rich diet, even though the former lived on average 9 days (14%) longer. Furthermore, at the middle age of 21 days, flies on low‐yeast diets showed poorer short‐term (5 min) memory than flies on rich diet. In contrast, dietary restriction enhanced 60‐min memory of young (5 days old) flies. Thus, while dietary restriction had complex effects on learning performance in young to middle‐aged flies, it did not attenuate aging‐related decline of aversive learning performance. These results are consistent with the hypothesis that, in Drosophila, dietary restriction reduces mortality and thus leads to lifespan extension, but does not affect the rate with which somatic damage relevant for cognitive performance accumulates with age.  相似文献   

15.
Mouse lemurs are suggested to represent promising novel non-human primate models for aging research. However, standardized and cross-taxa cognitive testing methods are still lacking. Touchscreen-based testing procedures have proven high stimulus control and reliability in humans and rodents. The aim of this study was to adapt these procedures to mouse lemurs, thereby exploring the effect of age. We measured appetitive learning and cognitive flexibility of two age groups by applying pairwise visual discrimination (PD) and reversal learning (PDR) tasks. On average, mouse lemurs needed 24 days of training before starting with the PD task. Individual performances in PD and PDR tasks correlate significantly, suggesting that individual learning performance is unrelated to the respective task. Compared to the young, aged mouse lemurs showed impairments in both PD and PDR tasks. They needed significantly more trials to reach the task criteria. A much higher inter-individual variation in old than in young adults was revealed. Furthermore, in the PDR task, we found a significantly higher perseverance in aged compared to young adults, indicating an age-related deficit in cognitive flexibility. This study presents the first touchscreen-based data on the cognitive skills and age-related dysfunction in mouse lemurs and provides a unique basis to study mechanisms of inter-individual variation. It furthermore opens exciting perspectives for comparative approaches in aging, personality, and evolutionary research.  相似文献   

16.
Decline in cognitive performance in old age is linked to both suboptimal neural processing in grey matter (GM) and reduced integrity of white matter (WM), but the whole-brain structure-function-cognition associations remain poorly understood. Here we apply a novel measure of GM processing–moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD)—to study the associations between GM function during resting state, performance on four main cognitive domains (i.e., fluid intelligence, perceptual speed, episodic memory, vocabulary), and WM microstructural integrity in 91 healthy older adults (aged 60-80 years). We modeled the relations between whole-GM SDBOLD with cognitive performance using multivariate partial least squares analysis. We found that greater SDBOLD was associated with better fluid abilities and memory. Most of regions showing behaviorally relevant SDBOLD (e.g., precuneus and insula) were localized to inter- or intra-network “hubs” that connect and integrate segregated functional domains in the brain. Our results suggest that optimal dynamic range of neural processing in hub regions may support cognitive operations that specifically rely on the most flexible neural processing and complex cross-talk between different brain networks. Finally, we demonstrated that older adults with greater WM integrity in all major WM tracts had also greater SDBOLD and better performance on tests of memory and fluid abilities. We conclude that SDBOLD is a promising functional neural correlate of individual differences in cognition in healthy older adults and is supported by overall WM integrity.  相似文献   

17.
Prior studies of aging and neuropathic injury have focused on senescent animals compared to young adults, while changes in middle age, particularly in the dorsal root ganglia (DRG), have remained largely unexplored. 14 neuroimmune mRNA markers, previously associated with peripheral nerve injury, were measured in multiplex assays of lumbar spinal cord (LSC), and DRG from young and middle-aged (3, 17 month) naïve rats, or from rats subjected to chronic constriction injury (CCI) of the sciatic nerve (after 7 days), or from aged-matched sham controls. Results showed that CD2, CD3e, CD68, CD45, TNF-α, IL6, CCL2, ATF3 and TGFβ1 mRNA levels were substantially elevated in LSC from naïve middle-aged animals compared to young adults. Similarly, LSC samples from older sham animals showed increased levels of T-cell and microglial/macrophage markers. CCI induced further increases in CCL2, and IL6, and elevated ATF3 mRNA levels in LSC of young and middle-aged adults. Immunofluorescence images of dorsal horn microglia from middle-aged naïve or sham rats were typically hypertrophic with mostly thickened, de-ramified processes, similar to microglia following CCI. Unlike the spinal cord, marker expression profiles in naïve DRG were unchanged across age (except increased ATF3); whereas, levels of GFAP protein, localized to satellite glia, were highly elevated in middle age, but independent of nerve injury. Most neuroimmune markers were elevated in DRG following CCI in young adults, yet middle-aged animals showed little response to injury. No age-related changes in nociception (heat, cold, mechanical) were observed in naïve adults, or at days 3 or 7 post-CCI. The patterns of marker expression and microglial morphologies in healthy middle age are consistent with development of a para-inflammatory state involving microglial activation and T-cell marker elevation in the dorsal horn, and neuronal stress and satellite cell activation in the DRG. These changes, however, did not affect the establishment of neuropathic pain.  相似文献   

18.
Behavioral wellness has become a recent focus for the care of laboratory animals, farm and zoo animals, and pets. Behavioral enrichment issues for these groups are more similar than dissimilar, and each group can learn from the other. The emphasis on overall enhancement for laboratory dogs and cats in this review includes an emphasis on behavioral enrichment. Understanding the range of behaviors, behavioral choices, and cognitive stimulation that cats and dogs exhibit under non-laboratory conditions can increase the ability of investigators to predict which enrichments are likely to be the most successful in the laboratory. Many of the enrichment strategies described are surprisingly straightforward and inexpensive to implement.  相似文献   

19.
The present experiment assessed learning and memory of a positional task by evaluating behavioral strategies as well as accuracy of a task in four young and four aged monkeys. They were tested in a delayed response (DR) task that has been widely used to study animal models of aging. The task consisted of two phases; an acquisition of the task and a positional memory test with five delay times (1-30 s). There was no clear difference between age groups in the number of trials needed for acquisition of the task. However, an analysis of behavior revealed differences in behavioral characteristics displayed during testing. The young monkeys showed various irrelevant behaviors during the execution of the task. In contrast, the aged monkeys consistently concentrated on the task exhibiting no behaviors irrelevant to the task. These results showed than the aged monkeys' performance was supported by a different behavioral strategy from the young monkeys. The results of the memory test were similar to those of the acquisition on the accuracy and the behavior. The aged monkeys depended on behavioral cues to preserve their positional memory, especially during the task. The present study suggests that cognitive impairments in aged monkeys can be compensated for by employing behavioral strategies.  相似文献   

20.
Host-searching behavior in insects generally varies among individuals. A number of physiological and environmental factors can be involved in such individual variation. Here, a series of behavioral observations were made to highlight the importance of physiological state (i.e., number of mature eggs a female carries, amount of nutrient reserves, etc.) and learning state (i.e., prior host experience) on host-approaching behavior of parasitoids. Itoplectis naranyae (Hymenoptera: Ichneumonidae), a solitary endoparasitoid wasp attacking lepidopteran pupae and prepupae, was used as a test insect. The results show that female wasps with experience ovipositing on hosts 2 days before the test found hosts more quickly than did naïve wasps. Prior experience of host odor itself did not affect host-finding behavior, however. A single oviposition was enough for wasps to shorten time to find a host; additional experience had no significant effect on the efficiency of searching. The number of mature eggs a female carried had no effect on the time required to find a host regardless of prior host experience. The size of wasps, instead, was a significant factor when wasps had no prior host experience, and larger wasps found hosts more rapidly than did smaller wasps. Searching activity was not affected by how many hosts a female wasp had fed on before testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号