首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several pyrophosphate analogues have been compared for their ability to inhibit the activities of isolated cytomegalovirus (CMV) DNA polymerase, herpes simplex virus type 1 (HSV 1) DNA polymerase and calf thymus DNA polymerase alpha. The most effective inhibitors were phosphonoformate and phosphonoacetate. Although not identical, the structural requirements for compounds inhibitory to CMV and HSV-1 DNA polymerase were specific, with two negatively charged groups in close vicinity. The CMV DNA polymerase was more susceptible to certain phosphonoacetates containing bulky hydrophobic alpha-substituents than was the HSV-1 DNA polymerase. No example of the converse preference was found. The inhibition of CMV DNA polymerase by phosphonoformate, hypophosphate, alpha-hydroxyphosphonoacetate and alpha-nonylphosphonoacetate was linear non-competitive with the deoxyribonucleoside triphosphates as variable substrates. Phosphonoformate, phosphonoacetate, and to a lesser extent alpha-hydroxyphosphonoacetate, carbonyldiphosphonate and alpha-nonylphosphonoacetate also inhibited the focus formation by CMV in cell-culture.  相似文献   

3.
Four patients who had chronic liver disease and were positive for hepatitis B surface antigen (HBsAg) were treated with vidarabine, a synthetic purine nucleoside that inhibits DNA polymerase activity in vitro and in vivo. Before treatment all had raised serum DNA polymerase concentrations. Three also had hepatitis B e (HBe) and were shown by electron microscopy to have hepatitis B virus (Dane) particles in their serum. In all patients 10 days'' treatment with vidarabine resulted in an immediate loss of DNA polymerase activity. In three patients the activity returned when treatment was stopped. In those three patients Dane particles and HBe antigen persisted during and after treatment; in the fourth patient, who remained negative for DNA polymerase, HBsAg titres fell. Although vidarabine inhibited virus replication, virus particles did not disappear from the blood in these patients, presumably because the particles were cleared only slowly. Similar results with interferon suggest that the virus disappears, and HBsAg titres fall, some weeks after the fall in DNA polymerase activity. Continued treatment may therefore have a sustained effect on viral replication. Whether vidarabine can permanently clear HBsAg and so arrest chronic liver disease remains to be seen, but at the very least it could reduce the spread of infection.  相似文献   

4.
Radioactive DNA was prepared in extensive (4 h) Dane particle DNA polymerase reactions. In different experiments the amount of new DNA, determined by the amount of nucleotide incorporation into an acid-insoluble form, was between 29 and 45% of the total circular DNA isolated from Dane particle preparations after the reaction. DNA reassociation kinetics were used to determine the complexity of the newly synthesized DNA. In different experiments COt1/2 values, corresponding to between 625 and 1,250 nucleotide pairs, were obtained for the radioactive Dane particle DNA. These results suggest that a unique region (or regions), corresponsing to approximately one-fourth to one-half of the circular Dane particle DNA template, was copied one time during the reaction. DNA and RNA extracted from hepatitis B virus-infected liver but not from uninfected liver accelerated the rate of reassociation of radioactive DNA from Dane particles. These Dane particle DNA base sequences were found in alkali-stable, rapidly sedimenting DNA from infected liver as well as in DNA sedimenting at a rate similar to the DNA extracted from Dane particles. These findings are consistent with Dane particle DNA being hepatitis B virus DNA that is integrated into high-molecular-weight cellular DNA and transcribed into RNA in infected liver.  相似文献   

5.
Phosphonoformic acid (PFA, foscarnet) belongs to a class of antiviral drugs that inhibit the human cytomegalovirus DNA polymerase (UL54) by mimicking the pyrophosphate leaving group of the nucleotide transfer reaction. Difficulties expressing UL54 have hampered investigation of the precise structural requirements rendering inhibition by this drug. However, a previously engineered chimeric DNA polymerase, constructed by mutating the homologous polymerase from bacteriophage RB69 (gp43) to express several variable elements from UL54, can bypass this obstacle because of its favorable expression and acquired sensitivity to PFA (Tchesnokov, E. P., Obikhod, A., Schinazi, R. F., and G?tte, M. (2008) J. Biol. Chem. 283, 34218-34228). Here, we compare two crystal structures that depict the chimeric DNA polymerase with and without PFA bound. PFA is visualized for the first time in the active site of a DNA polymerase, where interactions are resolved between the PP(i) mimic and two basic residues absolutely conserved in the fingers domain of family B polymerases. PFA also chelates metal ion B, the cation that contacts the triphosphate tail of the incoming nucleotide. These DNA complexes utilize a primer-template pair enzymatically chain-terminated by incorporation of acyclo-GMP, the phosphorylated form of the anti-herpes drug acyclovir. We postulate that the V478W mutation present in the chimera is critical in that it pushes the fingers domain to more readily adopt the closed conformation whether or not the drug is bound. The closed state of the fingers domain traps the variant polymerase in the untranslocated state and increases affinity for PFA. This finding provides a model for the mechanism of UL54 stalling by PFA.  相似文献   

6.
Mode of action of phosphonoformate as an anti-herpes simplex virus agent   总被引:1,自引:0,他引:1  
Phosphonoformate inhibited the replication of Herpes simplex virus (HSV) type 1 and type 2 in culture. The concentration required to inhibit the replication of both types of virus by 2 logs at 28 h post-infection was approximately 150 microM. It was more potent than phosphonoacetate against the growth of both virus types. A virus mutant which is resistant to phosphonoacetate was cross-resistant to phosphonoformate. Arsonoacetate, at 300 microM, had no antivirus activity. Phosphonoformate also inhibited HeLa and KB cell growth; at a concentration of about 500 microM, cell growth was inhibited by 50%. The anti-cell growth effects of the drug were completely reversible. The antivirus effect of phosphonoformate was partially reversible, depending on the time and duration of exposure of infected cultures to the drug. To obtain the maximum antivirus effect, phosphonoformate had to be added within the first 3 h post-virus-infection and be continuously present for at least 18 h. Phosphonoformate, added at 0 h post-infection, suppressed the induction of virus-specific DNA polymerase and DNAase activities. dTMP incorporation into DNA was preferentially inhibited in nuclei isolated from infected cells compared to uninfected cells, and the degree of inhibition varied with the ionic strength of the assay. Phosphonoformate was a potent inhibitor of the purified HSV-1 and HSV-2 DNA polymerases, inhibiting DNA polymerase activity by 50% at a concentration of 3 microM and ionic strength of 0.2.  相似文献   

7.
The presence in serum of hepatitis B e antigen (HBeAg) and hepatitis B virus DNA, which are each regarded as reflecting multiplication of hepatitis B virus, were looked for one to five days after the onset of hepatic encephalopathy in 64 patients with fulminant hepatitis B. HBeAg and hepatitis B virus DNA were found in the serum of only 24 (37%) and six (9%) patients, respectively. Hepatitis B virus DNA was absent from the serum in all 13 patients positive for anti-HBs. These findings indicate that replication of hepatitis B virus stopped after the onset of hepatic encephalopathy in most of the patients and support the view that an enhanced immune response stops the replication. Agents that inhibit viral multiplication would probably not have any effect at this stage of the disease.  相似文献   

8.
In chimpanzee hepatitis B virus (HBV) carriers, the mechanism of viral persistence has been examined by analyzing viral DNA molecules in liver and serum. Chimpanzee liver DNA contained two extrachromosomal HBV DNA molecules migrating on hybridization blots at 4.0 kb and 2.3 kb. There was no evidence for integration of HBV DNA into the host genome. The extrachromosomal molecules were distinct from Dane particle DNA and were converted to linear 3.25 kb full-length double-stranded HBV DNA on digestion with Eco RI. Nucleases S1 and Bal 31 converted "2.3 kb" HBV DNA to 3.25 kb via an intermediate of "4.0 kb" apparent length. The HBV DNA molecule that migrated at 2.3 kb represents a supercoiled form I of the HBV genome, and the molecule that migrated at 4.0 kb represents a full-length "nicked," relaxed circular form II. Evidence for supercoiled HBV DNA in serum Dane particles was obtained by production of form II molecules upon digestion with nuclease S1 or Bal 31. It is proposed that most Dane particles represent interfering noninfectious virus containing partially double-stranded DNA circles and that particles containing supercoiled HBV DNA may represent infectious hepatitis B virus.  相似文献   

9.
A hypothesis is presented which suggests that hepatitis B DNA in the Dane particles is only a partial viral genome which becomes integrated into the hepatocyte cellular DNA. The Dane particle DNA must enter a liver cell containing an active e gene, in order to become functional. It is suggested that the partial genome of hepatitis B virus is released from the cellular DNA by the mechanism of “escaping genes”.  相似文献   

10.
DNA Polymerase in the Core of the Human Hepatitis B Virus Candidate   总被引:27,自引:12,他引:15  
Experiments were done to show that the human hepatitis B antigen (HBAg)-associated DNA polymerase is a component of Dane particles and their antigenically distinct cores prepared by Nonidet P-40 detergent treatment of Dane particles. Before detergent treatment, the DNA polymerase was precipitated by serum containing anti-HB surface antigen (anti-HB(s)) but not with serum containing anti-HB core antigen (anti-HB(c)). After detergent treatment, the enzyme was precipitated by anti-HB(c)- and not by anti-HB(s)-containing serum. Highly purified 16- to 25-nm HBAg particles blocked only the precipitation of DNA polymerase in untreated HBAg preparations. The 110S structure with which the DNA reaction product remains associated in Nonidet P-40-treated preparations was identified as Dane particle core by immunoprecipitation with serum containing anti-HB(c). The DNA polymerase and the radioactive DNA reaction product were used as markers for core in immunoprecipitation tests for anticore. In such assays, 8 of 11 human sera with anti-HB(s) activity and all of 10 sera from chronic HBAg carriers were found to contain anti-HB(c) activity.  相似文献   

11.
The Eco RI fragment of hepatitis B virus (HBV) DNA isolated from human blood plasma Dane particles were inserted into plasmid pUC8 Eco RI site and transformed into E. coli JM103 host. Two recombinants pTWL1 and pTWL2 were found to carry 3.2 kbp fragment and proved to have HBV genome by Southern hybridization method. The 1.4 kbp Bam HI fragment which carried the hepatitis B viral surface antigen (HBsAg) gene, obtained via Bam HI digestion of Dane particles DNA which was made fully double stranded by endogenous DNA polymerase reaction, was also inserted into plasmid pUC8 Bam HI site. Four recombinant clones, pTWS1, pTWS2, pTWS3, and pTWS4 were found. Only one of the clones pTWS1 carried the HBsAg gene in a correct orientation with respect to the lac promoter sequence. The physical mapping of HBV DNA was performed with several restriction endonucleases. Our results indicated that the HBV DNA insert contains unique XbaI and HpaI cleavage sites and lacks the cleavage sites for the HindIII, SmaI, KpnI, SalI, and SstI endonucleases. The locations of Bam HI, BglII, and HincII endonucleases cleavage sites within the cloned HBV DNA of the pTWL1 plasmid were similar to that HBV DNA of adw and adw2 subtypes.  相似文献   

12.
The circular DNA of hepatitis B Dane particles, which serves as the primer/template for an endogenous DNA polymerase, was analyzed by electrophoresis before and after a polymerase reaction and after digestion by restriction endonuclease or single-strand-specific endonuclease S1. The unreacted molecules extracted from the particles were electrophoretically heterogeneous, and treatment with S1 nuclease produced double-stranded linear DNA ranging in length from 1,700 to 2,800 base pairs (bp). After an endogenous DNA polymerase reaction, two discrete species of DNA molecules were found: a circular form and a linear form 3,200 bp long. The reaction resulted in a population of molecules with an elongated and more homogeneous double-stranded region. These results suggest that the circular molecules in Dane particles have single-stranded regions of varying lengths that are made double stranded during the DNA polymerase reaction. The endogenous DNA polymerase was found to initiate apparently at random in a region spanning more than a third of the molecule. Analysis of restriction endonuclease cleavage fragments of the fully elongated DNA revealed that although the molecules were of a uniform length, they were somewhat heterogeneous in sequence. The sum of the sizes of the 10 major endonuclease Hae III-generated fragments, detected by ethidium bromide, was 3,880 bp. Two additional fragments (B and G) detected by autoradiography after an endogenous DNA polymerase reaction with (32)P-labeled deoxynucleoside triphosphates made the total 4,910 bp.  相似文献   

13.
DNA of a Human Hepatitis B Virus Candidate   总被引:41,自引:23,他引:18       下载免费PDF全文
Particles containing DNA polymerase (Dane particles) were purified from the plasma of chronic carriers of hepatitis B antigen. After a DNA polymerase reaction with purified Dane particle preparations treated with Nonidet P-40 detergent, Dane particle core structures containing radioactive DNA product were isolated by sedimentation in a sucrose density gradient. The radioactive DNA was extracted with sodium dodecyl sulfate and isolated by band sedimentation in a preformed CsCl gradient. Examination of the radioactive DNA band by electron microscopy revealed exclusively circular double-stranded DNA molecules approximately 0.78 mum in length. Identical circular molecules were observed when DNA was isolated by a similar procedure from particles that had not undergone a DNA polymerase reaction. The molecules were completely degraded by DNase 1. When Dane particle core structures were treated with DNase 1 before DNA extraction, only 0.78-mum circular DNA molecules were detected. Without DNase treatment of core structures, linear molecules with lengths between 0.5 and 12 mum, in addition to the 0.78-mum circles were found. These results suggest that the 0.78-mum circular molecules were in a protected position within Dane particle cores and the linear molecules were not within core structures. Length measurements on 225 circular molecules revealed a mean length of 0.78 +/- 0.09 mum which would correspond to a molecular weight of around 1.6 x 10(6). The circular molecules probably serve as primer-template for the DNA polymerase reaction carried out by Dane particle cores. Thermal denaturation and buoyant density measurements on the Dane particle DNA polymerase reaction product revealed a guanosine plus cytosine content of 48 to 49%.  相似文献   

14.
Inorganic pyrophosphate (PPi) is a product of the polymerization reaction catalyzed by DNA- and RNA-polymerases. We have synthesized a number of novel non-hydrolysable PPi analogues, some of them have demonstrated inhibition of polymerization reaction catalyzed by hepatitis C virus RNA-dependent RNA-polymerase (NS5B). A new pharmacophore has been developed based on non-hydrolysable methylene-diphosphonate backbone. Structure-activity relationship analysis of 12 bisphosphonates is presented and structural features crucial for the ability of molecule to inhibit NS5B polymerase activity are ascertained.  相似文献   

15.
The RNA-dependent RNA polymerase (NS5B) of the hepatitis C virus (HCV) plays a key role in the life cycle of the virus. In order to find inhibitors of the HCV polymerase, we screened a library of 81 nucleotide (nt)-long synthetic DNA containing 35 random nucleotides by the Systematic Evolution of Ligands by Exponential enrichment (SELEX) approach. Thirty ligands selected for their binding affinity to the NS5B were classified into four groups on the basis of their sequence homologies. Among the selected molecules, two were able to inhibit in vitro the polymerase activity of the HCV NS5B. These aptamers appeared to be specific for HCV polymerase, as no inhibition of poliovirus 3D polymerase activity was observed. The binding and inhibitory potential of one aptamer (27v) was associated with the 35 nt-long variable region. This oligonucleotide displayed an apparent dissociation constant (K(d)) in the nanomolar range. Our results showed that it was able to compete with RNA templates corresponding to the 3'-ends of the (+) and the (-) HCV RNA for binding to the polymerase. The fact that a DNA aptamer could interfere with the binding of natural templates of the enzyme could help in performing structure-function analysis of the NS5B and might constitute a basis for further structure-based drug design of this crucial enzyme of HCV replication.  相似文献   

16.
17.
Phosphonoformic acid (PFA) and its congener phosphonoacetic acid (PAA) are inhibitors of viral replication whose mechanism of action appears to be the inhibition of viral DNA polymerase. These drugs inhibit mammalian DNA polymerase to a lesser extent. We sought to characterize the effects of phonoformic acid on mammalian cells by examining mutants of S49 cells (a mouse T-lymphoma line), which were selected by virtue of their resistance to phosphonoformic acid. The 11 mutant lines that were resistant to growth inhibition by 3 mM PFA had a range of growth rates, cell cycle distribution abnormalities, and resistance to the inhibitory effects of thymidine, acycloguanosine (acyclovir), aphidicolin, deoxyadenosine, and novobiocin. Most mutant lines had pools of ribonucleoside triphosphates and deoxyribonucleoside triphosphates similar to those of wild-type S49 cells. However, one line (PFA 3-9) had a greatly elevated dCTP pool. When this mutant line was further characterized, no apparent defect in DNA polymerase alpha activity was seen, but an increased ribonucleotide reductase activity, as assayed by CDP reduction in permeabilized cells, was observed. The CDP reductase activity in the PFA 3-9 cells decreased to wild-type control levels, and the CDP reductase activity of wild-type cells was also greatly reduced when PFA (2-3 mM) was added to permeabilized cells during the enzyme assay. These results demonstrate that PFA can directly inhibit ribonucleotide reductase activity in permeabilized cells. In addition, when PFA was added to exponentially growing cultures of either wild-type or PFA 3-9 mutant cells, the drug caused an arrest in S phase of the cell cycle and a decrease in all four deoxyribonucleotide pools, with the most dramatic decrease in the dCTP pools. The reduction in the dCTP pool level could be reversed by addition of exogenous deoxycytidine, but this reversed PFA toxicity only marginally. These observations suggest that PFA is an inhibitor of mammalian ribonucleotide reductase and that partial resistance to PFA can be effected by mutation to increased CDP reductase activity resulting in a large dCTP pool. This mutation results in less than twofold resistance to PFA, suggesting that other sites of inhibition coexist.  相似文献   

18.
The infectious particles of hepatitis B virus are called Dane particles and consist of viral nucleic acid encapsulated within a core particle that is enveloped by virus-coded surface proteins. The major S protein constitutes a significant fraction of these surface proteins. In addition, there are two other related proteins (large S and middle S), but their role in envelope formation has not yet been elucidated. We modified the translation initiation codon ATG of each of the envelope proteins by site-directed mutagenesis and found that mutant genomes that did not produce one or two of these proteins were unable to form Dane particles. The particles released into the culture medium by such mutants did not carry DNA. Synthesis of virus-coded RNA still occurred normally, and core particles carrying DNA accumulated intracellularly. The DNA in such core particles was mostly in the double-stranded open circular form, in contrast to the normal situation in which the particles contain mostly RNA and its complementary single-stranded DNA or else contain linear DNA that is partially single stranded and otherwise duplex. The role of the large S and middle S proteins in the formation of Dane particles is discussed.  相似文献   

19.
DNA isolated from the hepatitis B antigen form known as the Dane particle was examined by electron microscopy before and after the endogenous Dane particle DNA polymerase reaction. The most frequently occurring form was an untwisted circular double-stranded DNA molecule approximately 1 mum in length. Less frequently occurring forms included circular DNA of approximately unit length and having one or more small single-stranded regions, similar circular molecules with one or more tails either shorter or longer than 1 mum in length, and very small circular molecules with tails. There was no increase in frequency or length of tails after a DNA polymerase reaction, suggesting that tails were not formed during this reaction. The mean length of circular molecules increased by 23% when DNA was spread in formamide compared with aqueous spreading, suggesting that single-stranded regions are present in most of the molecules. The mean length of circular molecules obtained from aqueous spreading increased by 27% after a Dane particle DNA polymerase reaction. This indicates that single-stranded regions were converted to double-stranded DNA during the reaction.  相似文献   

20.
In chimpanzee hepatitis B virus (HBV) carriers, the molecular mechanism for viral persistence has been examined by analyzing the properties of viral DNA molecules in liver and serum. Two extrachromosomal HBV-DNA molecules migrating on Southern blots at 4.0 kb and 2.3 kb were observed in chimpanzee liver DNA. There was no evidence for integration of HBV sequences into the host genome. The HBV-DNA molecule which migrated at 4.0 kb position represents a full-length "nicked," relaxed circular form, and the DNA molecules migrating at 2.3 kb position represents a supercoiled form of the HBV genome. Evidence for supercoiled HBV-DNA in serum was obtained by production of the relaxed circular intermediate upon digestion of Dane particle DNA with specific nucleases S1 and Bal 31. A possible role of these two extrachromosomal HBV-DNA molecules in the biology of hepatitis B virus infection and the mechanism for viral persistence are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号