首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of the energy metabolism is crucial to ensure the functionality of the entire organism. Deregulations may lead to severe pathologies such as obesity and type 2 diabetes mellitus. The decisive role of the brain as the active controller and heavy consumer in the complex whole body energy metabolism is the matter of recent research. Latest studies suggest that the brain's energy supply has the highest priority while all organs in the organism compete for the available energy resources. In our novel mathematical model, we address these new findings. We integrate energy fluxes and their control signals such as glucose fluxes, insulin signals as well as the ingestion momentum in our new dynamical system. As a novel characteristic, the hormone insulin is regarded as central feedback signal of the brain. Hereby, our model particularly contains the competition for energy between brain and body periphery. The analytical investigation of the presented dynamical system shows a stable long-term behavior of the entire energy metabolism while short time observations demonstrate the typical oscillating blood glucose variations as a consequence of food intake. Our simulation results demonstrate a realistic behavior even in situations like exercise or exhaustion, and key elements like the brain's preeminence are reflected. The presented dynamical system is a step towards a systemic understanding of the human energy metabolism and thus may shed light to defects causing diseases based on deregulations in the energy metabolism.  相似文献   

2.
During the last decade, studies aimed at investigating genes and molecular pathways involved in aging have been very fruitful and led to the identification of several mechanisms responsible for aging. Overall, those results put forward the capacity of cells and organisms to sense and respond to stress, as a critical factor for a healthy and long life. Those molecular pathways are tightly linked with the overall metabolism of an organism. Indeed, environmental stresses trigger a plethora of defense mechanisms which are energy demanding while still the organism has to allocate energy for the maintenance of basic functions. So all along our life, we have to adapt to different stresses while optimizing energy use. This review aims at highlighting data from the literature that support the crucial role of metabolism as a modulator of aging and age-associated disease, as illustrated by the beneficial effect of dietary restriction on longevity and cancer development.  相似文献   

3.
Mitochondria do not only produce less ATP, but they also increase the production of reactive oxygen species (ROS) as by-products of aerobic metabolism in the aging tissues of the human and animals. It is now generally accepted that aging-associated respiratory function decline can result in enhanced production of ROS in mitochondria. Moreover, the activities of free radical-scavenging enzymes are altered in the aging process. The concurrent age-related changes of these two systems result in the elevation of oxidative stress in aging tissues. Within a certain concentration range, ROS may induce stress response of the cells by altering expression of respiratory genes to uphold the energy metabolism to rescue the cell. However, beyond the threshold, ROS may cause a wide spectrum of oxidative damage to various cellular components to result in cell death or elicit apoptosis by induction of mitochondrial membrane permeability transition and release of apoptogenic factors such as cytochrome c. Moreover, oxidative damage and large-scale deletion and duplication of mitochondrial DNA (mtDNA) have been found to increase with age in various tissues of the human. Mitochondria act like a biosensor of oxidative stress and they enable cell to undergo changes in aging and age-related diseases. On the other hand, it has recently been demonstrated that impairment in mitochondrial respiration and oxidative phosphorylation elicits an increase in oxidative stress and causes a host of mtDNA rearrangements and deletions. Here, we review work done in the past few years to support our view that oxidative stress and oxidative damage are a result of concurrent accumulation of mtDNA mutations and defective antioxidant enzymes in human aging.  相似文献   

4.
Firing patterns of 15 dopamine neurons in the rat substantia nigra were studied. These cells alternated between two firing modes, single-spike and bursting, which interwove to produce irregular, aperiodic interspike interval (ISI) patterns. When examined by linear autocorrelation analysis, these patterns appeared to reflect a primarily stochastic or random process. However, dynamical analysis revealed that the sequential behavior of a majority of these cells expressed "higher-dimensional" nonlinear deterministic structure. Dimensionality refers to the number of degrees of freedom or complexity of a time series. Bursting was statistically associated with some aspects of nonlinear ISI sequence dependence. Controlling for the effects of nonstationarity substantially increased overall predictability of ISI sequences. We hypothesize that the nonlinear deterministic structure of ISI firing patterns reflects the neuron's response to coordinated synaptic inputs emerging from neural circuit interactions.  相似文献   

5.
Firm support for the notion that metabolism and particularly mitochondrial metabolism plays a significant role in aging has been gathered in studies on yeast. As in other organisms, mitochondria contribute to aging through their propensity to generate reactive oxygen species. There is more to the involvement of mitochondria in aging than this, however. Mitochondrial dysfunction, which accumulates during aging, triggers the retrograde response, an intracellular signaling pathway that activates genes that compensate for this dysfunction. A key signaling protein in this pathway is the Rtg2 protein. Recent studies have provided evidence that this protein lies at the nexus of the four major processes that are involved in aging in yeast and in other organisms; namely, metabolism, stress resistance, chromatin-dependent gene regulation, and genome stability. The details of this central role of Rtg2 protein explain the delicate balance between longevity and aging, which ultimately must tip towards the latter. Phenomena that resemble the retrograde response appear to exist in human cells, with both common and cell type-specific gene expression changes as the output.  相似文献   

6.
The regulation of the human energy metabolism is crucial to ensure the functionality of the entire organism. Deregulations may lead to severe pathologies such as diabetes mellitus and obesity. The decisive role of the brain as active controller and heavy consumer in the complex whole-body energy metabolism is the object of recent research. Latest studies suggest the priority of the brain energy supply in the competition between brain and body periphery for the available energy resources. In this paper, a systemic investigation of the human energy metabolism is presented which consists of a compartment model including periphery, blood, and brain as well as signaling paths via insulin, appetite, and ingestion. The presented dynamical system particularly contains the competition for energy between brain and body periphery. Characteristically, the hormone insulin is regarded as central feedback signal of the brain. The model realistically reproduces the qualitative behavior of the energy metabolism. Short-time observations demonstrate the physiological periodic food intake generating the typical oscillating blood glucose variations. Integration over the daily cycle yields a long-term model which shows a stable behavior in accordance with the homeostatic regulation of the energy metabolism on a long-time scale. Two types of abstract constitutive equations describing the interaction between compartments and signals are taken into consideration. These are nonlinear and linear representatives from the class of feasible relations. The robustness of the model against the choice of the representative relation is linked to evolutionary stability of existing organisms.  相似文献   

7.
M Raes 《Mutation research》1991,256(2-6):149-168
Microtubules are ubiquitous cellular components involved in the control of cell structure and functions, such as cell division, regulation of shape and polarity, intracellular transport, etc. Consequently, any alteration affecting them in structure or function has a good chance of affecting the cell and generally leads to cell dysfunctions. This has been shown for instance, after treatment with microtubule-interacting drugs. Cellular aging is also characterized by the appearance of various cell dysfunctions, but the possible involvement of the microtubules in the aging process, although a rather tempting hypothesis, has not yet been extensively investigated. In this paper, I will first rapidly review the different components that build, organize and control the microtubules in normal cells, independently of the aging process. I will then consider the possible involvement of the microtubules in the aging process, more particularly in models of cells aging in vitro and in aging neuronal cells, which have been the most extensively investigated. There is some evidence for alterations in the microtubule organization both in cells aging in vitro and in the aging brain. But the interpretation of these data awaits further experiments, taking into account the latest progress in tubulin genetics and in microtubule biochemistry. Microtubules could also represent one of the cellular targets affected after signal transduction and could thus be involved in the resulting cellular responses. This hypothesis will be discussed, as it offers new insights into the regulation of microtubule organization, dynamics and functions in normal cells, which will be worthwhile to investigate during the aging process.  相似文献   

8.
We measure the dynamical mechanical properties of human red blood cells. A single cell response is measured with optical tweezers. We investigate both the stress relaxation following a fast deformation and the effect of varying the strain rate. We find a power-law decay of the stress as a function of time, down to a plateau stress, and a power-law increase of the cell's elasticity as a function of the strain rate. Interestingly, the exponents of these quantities violate the linear superposition principle, indicating a nonlinear response. We propose that this is due to the breaking of a fraction of the crosslinks during the deformation process. The soft glassy rheology model accounts for the relation between the exponents we observe experimentally. This picture is consistent with recent models of bond remodeling in the red blood cell's molecular structure. Our results imply that the blood cell's mechanical behavior depends critically on the deformation process.  相似文献   

9.
We present initial results regarding the existence, stability and interactionof linear and nonlinear vibrational modes in a system of two coupled, onedimensional lattices with unequal numbers of masses. The effects on thesenonlinear modes of coupling a near continuum system to a discrete systemusing a nonlinear coupling are examined. This numerical model is a firststep towards investigating the dynamical behavior of a flexible sheetcoupled nonlinearly to a semi-rigid support, a system which couldconceivably represent a biological cell membrane with a supporting proteinnetwork. General implications for the dynamical behavior of continuumsystems coupled nonlinearly to discrete systems are introduced.  相似文献   

10.
We present a dynamical model of lipoprotein metabolism derived by combining a cascading process in the blood stream and cellular level regulatory dynamics. We analyse the existence and stability of equilibria and show that this low-dimensional, nonlinear model exhibits bistability between a low and a high cholesterol state. A sensitivity analysis indicates that the intracellular concentration of cholesterol is robust to parametric variations while the plasma cholesterol can vary widely. We show how the dynamical response to time-dependent inputs can be used to diagnose the state of the system. We also establish the connection between parameters in the system and medical and genetic conditions.  相似文献   

11.
Adipose tissue, which is the crucial energy reservoir and endocrine organ for the maintenance of systemic glucose, lipid, and energy homeostasis, undergoes significant changes during aging. These changes cause physiological declines and age-related disease in the elderly population. Here, we review the age-related changes in adipose tissue at multiple levels and highlight the underlying mechanisms regulating the aging process. We also discuss the pathogenic pathways of age-related fat dysfunctions and their systemic negative consequences, such as dyslipidemia, chronic general inflammation, insulin resistance, and type 2 diabetes (T2D). Age-related changes in adipose tissue involve redistribution of deposits and composition, in parallel with the functional decline of adipocyte progenitors and accumulation of senescent cells. Multiple pathogenic pathways induce defective adipogenesis, inflammation, aberrant adipocytokine production, and insulin resistance, leading to adipose tissue dysfunction. Changes in gene expression and extracellular signaling molecules regulate the aging process of adipose tissue through various pathways. In addition, adipose tissue aging impacts other organs that are infiltrated by lipids, which leads to systemic inflammation, metabolic system disruption, and aging process acceleration. Moreover, studies have indicated that adipose aging is an early onset event in aging and a potential target to extend lifespan. Together, we suggest that adipose tissue plays a key role in the aging process and is a therapeutic target for the treatment of age-related disease, which deserves further study to advance relevant knowledge.Subject terms: Senescence, Endocrine system and metabolic diseases  相似文献   

12.
We followed the time course of the activities of various hydrolytic enzymes in murine brain for 30 months to investigate their roles in the aging process. Although most of the 15 enzymatic activities tested tended to rise with the increase in age, by analyzing them by multivariate analysis their movements could be divided into three types, each having a particular mode of nonlinear regression: exponential, logarithmic, or parabolic. Several enzymatic activities, including those of angiotensin-converting enzyme, esterase, trypsin-like enzyme, post-proline-cleaving enzyme, and Gly-Pro-aminopeptidase, showed rhythmic oscillations with about one cycle per 3 months throughout the period of 30 months. The behavior of these enzymes probably represents some particular aspect of metabolism relatively independent from the aging process. These findings may provide a fundamental clue in association with the process of maturation and aging in the brain.  相似文献   

13.
The hypothalamus is a crucial integrative center in the central nervous system, responsible for the regulation of homeostatic activities, including systemic energy balance. Increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions; they participate in the modulation of synaptic transmission, metabolic and trophic support to neurons, immune defense, and nutrient sensing. In this context, disturbance of systemic energy homeostasis, which is a common feature of obesity and the aging process, involves inflammatory responses. This may be related to dysfunction of hypothalamic astrocytes. In this regard, the aim of this study was to evaluate the neurochemical properties of hypothalamic astrocyte cultures from newborn, adult, and aged Wistar rats. Age-dependent changes in the regulation of glutamatergic homeostasis, glutathione biosynthesis, amino acid profile, glucose metabolism, trophic support, and inflammatory response were observed. Additionally, signaling pathways including nuclear factor erythroid-derived 2-like 2/heme oxygenase-1 p38 mitogen-activated protein kinase, nuclear factor kappa B, phosphatidylinositide 3-kinase/Akt, and leptin receptor expression may represent putative mechanisms associated with the cellular alterations. In summary, our findings indicate that as age increases, hypothalamic astrocytes remodel and exhibit changes in their neurochemical properties. This process may play a role in the onset and/or progression of metabolic disorders.  相似文献   

14.
15.
Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.  相似文献   

16.
This paper deals with the blood glucose level modeling for Type 1 Diabetes Mellitus (T1DM) patients. The model is developed using a recurrent neural network trained with an extended Kalman filter based algorithm in order to develop an affine model, which captures the nonlinear behavior of the blood glucose metabolism. The goal is to derive a dynamical mathematical model for the T1DM as the response of a patient to meal and subcutaneous insulin infusion. Experimental data given by continuous glucose monitoring system is utilized for identification and for testing the applicability of the proposed scheme to T1DM subjects.  相似文献   

17.
Aging is associated with a variety of pathologies, including motor dysfunctions and reductions in sexual behavior. In male rats, declines in sexual behavior during the aging process may be caused in part by the loss of the lumbar spinal cord motoneurons that innervate the penile musculature. Alternatively, declining sexual behavior may be caused by the precipitous reductions in circulating testosterone that occur during aging. In this paper, we report two experiments examining these issues. In Experiment 1, we counted motoneurons in the lumbar motor nuclei and measured several androgen-sensitive morphological properties of the penile muscles and their innervating motoneurons at several time points during the aging process. Motoneuron number in the lumbar nuclei did not change over time, even with very advanced age. In contrast, the penile muscles and their innervating motoneurons underwent profound atrophy, with muscle weight and motoneuron dendritic length declining to less than 50% of young adult levels. In Experiment 2, we treated aged animals with exogenous testosterone, and then examined their penile neuromuscular systems for morphological changes. Testosterone treatment, both acute and chronic, completely reversed age-related declines in the weight of the penile muscles and in the soma size and dendritic length of their innervating motoneurons. Together, these data suggest that reductions in male sexual behavior during the aging process are caused primarily by declines in testosterone levels rather than motoneuron loss. Furthermore, they raise the possibility that testosterone treatment could play an important role in maintaining neuronal connectivity in the aging body.  相似文献   

18.
Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.  相似文献   

19.
20.
The process of skeletal muscle aging is characterized by a progressive loss of muscle mass and functionality. The underlying mechanisms are highly complex and remain unclear. This study was designed to further investigate the consequences of aging on mitochondrial oxidative phosphorylation in rat gastrocnemius muscle, by comparing young (6 months) and aged (21 months) rats. Maximal oxidative phosphorylation capacity was clearly reduced in older rats, while mitochondrial efficiency was unaffected. Inner membrane properties were unaffected in aged rats since proton leak kinetics were identical to young rats. Application of top-down control analysis revealed a dysfunction of the phosphorylation module in older rats, responsible for a dysregulation of oxidative phosphorylation under low activities close to in vivo ATP turnover. This dysregulation is responsible for an impaired mitochondrial response toward changes in cellular ATP demand, leading to a decreased membrane potential which may in turn affect ROS production and ion homeostasis. Based on our data, we propose that modification of ANT properties with aging could partly explain these mitochondrial dysfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号