首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R. G. Lloyd  C. Buckman 《Genetics》1995,139(3):1123-1148
The formation of recombinants during conjugation between Hfr and F(-) strains of Escherichia coli was investigated using unselected markers to monitor integration of Hfr DNA into the circular recipient chromosome. In crosses selecting a marker located ~500 kb from the Hfr origin, 60-70% of the recombinants appeared to inherit the Hfr DNA in a single segment, with the proximal exchange located >300 kb from the selected marker. The proportion of recombinants showing multiple exchanges increased in matings selecting more distal markers located 700-2200 kb from the origin, but they were always in the minority. This effect was associated with decreased linkage of unselected proximal markers. Mutation of recB, or recD plus recJ, in the recipient reduced the efficiency of recombination and shifted the location of the proximal exchange (s) closer to the selected marker. Mutation of recF, recO or recQ produced recombinants in which this exchange tended to be closer to the origin, though the effect observed was rather small. Up to 25% of recombinant colonies in rec(+) crosses showed segregation of both donor and recipient alleles at a proximal unselected locus. Their frequency varied with the distance between the selected and unselected markers and was also related directly to the efficiency of recombination. Mutation of recD increased their number by twofold in certain crosses to a value of 19%, a feature associated with an increase in the survival of linear DNA in the absence of RecBCD exonuclease. Mutation of recN reduced sectored recombinants in these crosses to ~1% in all the strains examined, including recD. A model for conjugational recombination is proposed in which recombinant chromosomes are formed initially by two exchanges that integrate a single piece of duplex Hfr DNA into the recipient chromosome. Additional pairs of exchanges involving the excised recipient DNA, RecBCD enzyme and RecN protein, can subsequently modify the initial product to generate the spectrum of recombinants normally observed.  相似文献   

2.
Summary The recombination proficiency of three recipient strains of Escherichia coli K 12 carrying different plasmids was investigated by conjugal mating with Hfr Cavalli. Some plasmids (e.g. R1drd 19, R6K) caused a marked reduction in the yield of recombinants formed in crosses with Hfr but did not reduce the ability of host strains to accept plasmid F104. The effect of plasmids on recombination was host-dependent. In Hfr crosses with AB1157 (R1-19) used as a recipient the linkage between selected and unselected proximal markers of the donor was sharply decreased. Plasmid R1-19 also decreased the yield of recombinants formed by recF, recL, and recB recC sbcA mutants, showed no effect on the recombination proficiency of recB recC sbcB mutant, and increased the recombination proficiency of recB, recB recC sbcB recF, and recB recC sbcB recL mutants. An ATP-dependent exonuclease activity was found in all tested recB recC mutants carrying plasmid R1-19, while this plasmid did not affect the activity of exonuclease I in strain AB1157 and its rec derivatives. The same plasmid was also found to protect different rec derivatives of the strain AB1157 against the lethal action of UV light. We suppose that a new ATP-dependent exonuclease determined by R1-19 plays a role in both repair and recombination of the host through the substitution of or competition with the exoV coded for by the genes recB and recC.  相似文献   

3.
T Asai  T Kogoma 《Journal of bacteriology》1994,176(22):7113-7114
DNA damage-inducible DNA replication in SOS-induced Escherichia coli cells, termed inducible stable DNA replication (iSDR), has previously been shown to require either the RecBCD or the RecE pathway of homologous recombination for initiation. Here, we demonstrate that recB recC sbcC quadruple mutant cells are capable of iSDR induction and that a mutation in the recJ gene abolishes the inducibility. These results indicate that the RecF pathway of homologous recombination can also catalyze iSDR initiation.  相似文献   

4.
The frequency of genetic exchanges between F' factors and the bacterial chromosome was studied in recombination-deficient Escherichia coli mutants under conditions in which the recombinant F' factors were immediately transferred to new hosts. In a series of double matings, F101-1 thr(+)leu(-) episomes were first transferred into each of four intermediate F(-)thr(-)leu(+) strains carrying various rec alleles. After the original F' donors were killed with phage T6, the F101-1 episomes were then transferred from the intermediate cells to F(-)thr(-)leu(-)Str(R)recA(-) females. Recipients of nonrecombinant episomes formed Thr(+) (Str(R)) colonies, and recipients of recombinant episomes formed Leu(+)(Str(R)) colonies. A comparison of the numbers of Leu(+)(Str(R)) and Thr(+)(Str(R)) colonies shows that recB(-) males formed 18 to 21% and recC(-) formed 47 to 60% of the wild-type level of recombinant episomes that could be detected after transfer. No recombinant episomes were detected using a recA(-) intermediate strain. If the intermediate strains harboring the F101 episomes were purified, allowed to grow for 50 generations, and then mated with the recA(-) recipient, recombinant episomes were transferred at 8% of the wild-type level for recB(-) and 13% for recC(-). In contrast, only 0.4 and 0.6% of the normal number of recombinants were obtained from crosses between Hfr Cavalli donors and the same recB(-) and recC(-) strains. Recombinant episomes were detected with greater frequency among newly formed rec(+), recB(-), and recC(-) partial diploids than in those which were 50 generations old.  相似文献   

5.
The radB101 and recN262 mutations showed essentially identical phenotypes when compared in isogenic Escherichia coli strains for their effects on gamma and UV radiation survival and on conjugal recombination in a uvrA recB recC sbcB sbcC strain. Complementation tests involving attempts to reconstitute a radB+ recN+ strain by transductions between radB101 and recN262 donors and recipients, and tests involving plasmids carrying recN+ and recN::Tn1000 inserts, indicated that the radB and recN genes are identical. We suggest that the radB101 mutation now be referred to as recN2001.  相似文献   

6.
Conjugational recombination in Escherichia coli was investigated by comparing the effects of recN, recO, ruv and lexA mutations on the formation of recombinants in crosses with strains lacking RecBCD enzyme. The results presented reveal that recN and ruv mutations do not abolish residual recombination in a recB mutant, and have only a rather modest effect on recombination in recBC sbcA strains; in these respects they are quite different from recF, recJ and recO mutations. The differences between these two groups of genes are discussed in relation to the molecular exchanges needed to produce viable recombinants.  相似文献   

7.
The plasmid of Salmonella typhimurium LT2   总被引:18,自引:0,他引:18  
Summary Methods of clonal analysis were applied to the study of heterogeneity of the progeny after crosses of 4 donor strains (Hfr H, Hfr C, KL 16 and KL 99) with 3 recipient strains (PC 0212, AB 712 and ECK 022). Three markers were used in each cross. The distal one was the selective marker. The inheritance of two additional proximal markers characterized the heterogeneity of clones originating from particular zygotes. In most crosses the percentage of heterogeneity exceeded 30. One of the recipient strains, obtained by conjugation of the conventional strain PC 0212 with the donor Hfr H revealed unusual properties in respect to heterogeneity. Exconjugants derived from this recipient (ECK 022) and donor Hfr H and Hfr C had a heterogeneity index of about 5%. It is shown that this unusual behavior reflects a very fast process of segregation of recombinants.In crosses with the donors KL 16 and KL 99 the same recipient revealed normal indices of heterogeneity. All these data are explained assuming that there exists a specific genetic marker which determines the process of decay of merozygotes. Tentatively it is called het. Its approximate localization was deduced from specifically designed experiments, in which the heterogeneity of the progeny was found very different, when the donor KL 16 transmitted different parts of its chromosome to the recipient ECK 022.  相似文献   

8.
Evidence is presented to show that Escherichia coli JC7618, JC7621, and JC7623, previously regarded as having a recB recC sbcB genotype, carry an additional mutation in a new gene designated sbcC at minute 9 on the standard genetic map. In the absence of the sbcC mutation these strains are sensitive to mitomycin C and have a reduced efficiency of recombination. Cultures of recBC sbcB (sbcC+) strains grow slowly, contain many inviable cells, and rapidly accumulate fast-growing variants due to mutation of sbcC. sbcC has been identified on recombinant plasmids and tentatively located by Tn1000 mutagenesis to a 0.9-kilobase DNA section between proC and phoR.  相似文献   

9.
The formation of recombinants in Hfr crosses was studied in Escherichia coli strains carrying combinations of genes known to affect recombination and DNA repair. Mutations in ruv and recG eliminate activities that have been shown to process Holliday junction intermediates by nuclease cleavage and/or branch migration. Strains carrying null mutations in both ruv and recG produce few recombinants in Hfr crosses and are extremely sensitive to UV light. The introduction of additional mutations in recF, recJ, recO, recQ, or recR is shown to increase the yield of recombinants by 6- to 20-fold via a mechanism that depends on recBC. The products of these genes have been linked with the initiation of recombination. We propose that mutation of recF, recJ, recO, recQ, or recR redirects recombination to events initiated by the RecBCD enzyme. The strains constructed were also tested for sensitivity to UV light. Addition of recF, recJ, recN, recO, recQ, or recR mutations had no effect on the survival of ruv recG strains. The implications of these findings are discussed in relation to molecular models for recombination and DNA repair that invoke different roles for the branch migration activities of the RuvAB and RecG proteins.  相似文献   

10.
Transient induction of lambda prophage increases the ultraviolet light resistance of most exponentially growing Escherichia coli lysogens. Resistance is increased in wild-type, recB, recB recC, recB recC recF, and recB recC recL hosts. No enhancement in recA lysogens was found, nor was there enhancement in stationary cultures. Enhancement was dependent upon the lambdared recombination system. Transient induction also increases the genetic recombination rate in recB lysogens as measured in Hfr X F- matings.  相似文献   

11.
RecBCD enzyme has multiple activities including helicase, exonuclease and endonuclease activities. Mutations in the genes recB or recC, encoding two subunits of the enzyme, reduce the frequency of many types of recombinational events. Mutations in recD, encoding the third subunit, do not reduce recombination even though most of the activities of the RecBCD enzyme are severely reduced. In this study, the genetic dependence of different types of recombination in recD mutants has been investigated. The effects of mutations in genes in the RecBCD pathway (recA and recC) as well as the genes specific for the RecF pathway (recF, recJ, recN, recO, recQ, ruv and lexA) were tested on conjugational, transductional and plasmid recombination, and on UV survival. recD mutants were hyper-recombinogenic for all the monitored recombination events, especially those involving plasmids, and all recombination events in recD strains required recA and recC. In addition, unlike recD+ strains, chromosomal recombination events and the repair of UV damage to DNA in recD strains were dependent on one RecF pathway gene, recJ. Only a subset of the tested recombination events were affected by ruv, recN, recQ, recO and lexA mutations.  相似文献   

12.
Genetic recombination was studied in E. coli mutants that carry lesions in the recA gene but retain some capacity for generating recombinant progeny. We observed that recombination was detectable only at a very low level during the incubation of leaky RecA- merozygotes in broth. However, recombination appeared to occur at much higher frequencies when recombinant progeny were assayed by selection on minimal agar. Analysis of the recombinants obtained with Hfr donors revealed a deficiency of multiple exchanges per unit length of DNA in leaky RecA - strains. In many of these crosses recombinants that inherited donor alleles close to the transfer origin were much reduced in frequency, except when the recipient was also RecB-.  相似文献   

13.
Escherichia coli strains containing mutations in lexA, rep, uvrA, uvrD, uvrE, lig, polA, dam, or xthA were constructed and tested for conjugation and transduction proficiencies and ability to form Lac+ recombinants in an assay system utilizing a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1). lexA and rep mutants were as deficient (20% of wild type) as recB and recC strains in their ability to produce Lac+ progeny. All the other strains exhibited increased frequencies of Lac+ recombinant formation, compared with wild type, ranging from 2- to 13-fold. Some strains showed markedly increased conjugation proficiency (dam uvrD) compared to wild type, while others appeared deficient (polA107). Some differences in transduction proficiency were also observed. Analysis of the Lac+ recombinants formed by the various mutants indicated that they were identical to the recombinants formed by a wild-type strain. The results indicate that genetic recombination in E. coli is a highly regulated process involving multiple gene products.  相似文献   

14.
Strains of Escherichia coli have been made carrying lesions in more than one gene determining recombination. The following genotypes were constructed and verified: recC22 recB21 recA(+), recC22 recB21 recA13, recC22 recB(+)recA13, and recC(+)recB21 recA13. All multiple rec(-) strains carrying recA13 were similar to AB2463, which carries recA13 alone, in their UV sensitivities, recombination deficiencies, and inabilities to induce lambda phage in a lysogen. However, whereas AB2463 shows a high rate of ultraviolet (UV)-induced deoxyribonucleic acid (DNA) breakdown, the multiple rec(-) strains showed the low level characteristic of strains carrying recC22 or recB21 alone. The strain carrying both recC22 and recB21 was similar in all properties to the single mutants, suggesting that both gene products act in the same part of the recombination and UV repair pathways. It is concluded that in a Rec(+) strain, the recA(+) product acts to inhibit DNA breakdown determined by the recC(+) and recB(+) products.  相似文献   

15.
Previous workers have shown that intergeneric crosses between Salmonella typhimurium and Escherichia coli produce a high proportion of merodiploid recombinants among the viable progeny. We have examined the unequal cross-over event that was responsible for a number of intergeneric merodiploids. The merodiploids that we studied were all heterozygous for the metB-argH interval and were the products of intergeneric conjugal crosses. We found that when the S. typhimurium donor had its transfer origin closely linked to metB and argH, all recombinants examined were merodiploid, and they generally arose as F-prime factors. Many of these F-prime factors had been created by recombination between flanking rrn genes in the donor. When the S. typhimurium Hfr transfer origin was more distant from the selected markers, quite different results were obtained. Depending on the donor, 19-47% of the recombinants that acquired the donor argH+ or metB+ genes were merodiploid for these loci, but none of the recombinants were F-prime. A majority of the merodiploids had a novel (nonparental) rrn gene, indicating that unequal recombination between nonidentical rrn genes was a prevalent mechanism for establishing the merodiploidy. Both tandem and nontandem duplications were found. Some of the merodiploids duplicated E. coli genes in addition to acquiring S. typhimurium genes. Some merodiploids contained the oriC region from each parent. Of a total of 118 intergeneric merodiploids characterized from all donors, 48 different genotypes were observed, and 38 of the 48 had one or more nonparental rrn operons.  相似文献   

16.
By making use of the gam(+)-plasmid, the so-called gam-dependent radioresistance was studied. This resistance is the result of the interaction between Gam protein (encoded by the gam gene of lambda) and RecBCD enzyme of Escherichia coli. gam-dependent radioresistance is observed in recB+ recC+ recD+ but not in recB+ recC+ recD- cells. It is suggested that Gam protein interacts specifically with the RecD subunit of RecBCD enzyme; the RecBC complex probably retains its activity in the presence of this viral protein.  相似文献   

17.
Approximately half of Salmonella typhosa hybrids resulting from mating with Escherichia coli Hfr donors inherit the selected donor marker by recombination, and the length of the E. coli chromosomal segment most frequently incorporated in these recombinants is between 1 and 2 min.  相似文献   

18.
The effect of mutations in known recombination genes (recA, recB, recC, recE, recF, recJ, recN, recO, recQ and ruv) on intramolecular recombination of plasmids was studied in recB recC sbcB and recB recC sbcA Escherichia coli mutants. The rate of recombination of circular dimer plasmids was at least 1000-fold higher in recB recC sbcB or recB recC sbcA mutants as compared to wild-type cells. The rate was decreased by mutations in recA, recF, recJ, recO, ruv or mutS in recB recC sbcB mutants, and by mutations in recE, recN, recO, recQ, ruv or mutS in recB recC sbcA mutants. In addition to measuring the recombination rate of circular dimer plasmids, the recombination-mediated transformation of linear dimer plasmids was also studied. Linear dimer plasmids transformed recB recC sbcB and recB recC sbcA mutants 20- to 40-fold more efficiently than wild-type cells. The transformation efficiency of linear dimer plasmids in recB recC sbcB mutants was decreased by mutations in recA, recF, recJ, recO, recQ or lexA (lexA3). In recB recC sbcA mutants the transformation efficiency of linear dimers was decreased only by a recE mutation. Physical analysis of linear dimer- or circular dimer-transformed recB recC sbcB mutants revealed that all transformants contained recombinant monomer genotypes. This suggests that recombination in recB recC sbcB cells is very efficient.  相似文献   

19.
Genetic recombination was studied in Escherichia coli F- strains in which synthesis of the recA gene product protein X is increased due to mutation in either recA (tif-1) or lexA (spr). When a single donor marker was selected, the recombination proficiency of these strains was not significantly altered in Hfr crosses. However, linkage of unselected, proximal Hfr markers was found to be much reduced among the progeny tested, and more of the progeny showed evidence of multiple exchanges between donor and recipient DNA. These effects were much more apparent when the recipient carried both tif-1 and spr mutations, but in this case recombination proficiency was reduced compared with those strains carrying either mutation alone, particularly in crosses with Hfr Cavalli. A lexA mutation was found to suppress the effect of tif-1 on the recombinant genotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号