首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The myelin sheath insulates axons in the vertebrate nervous system, allowing rapid propagation of action potentials via saltatory conduction. Specialized glial cells, termed Schwann cells in the PNS and oligodendrocytes in the CNS, wrap axons to form myelin, a compacted, multilayered sheath comprising specific proteins and lipids. Disruption of myelinated axons causes human diseases, including multiple sclerosis and Charcot-Marie-Tooth peripheral neuropathies. Despite the progress in identifying human disease genes and other mutations disrupting glial development and myelination, many important unanswered questions remain about the mechanisms that coordinate the development of myelinated axons. To address these questions, we began a genetic dissection of myelination in zebrafish. Here we report a genetic screen that identified 13 mutations, which define 10 genes, disrupting the development of myelinated axons. We present the initial characterization of seven of these mutations, defining six different genes, along with additional characterization of mutations that we have described previously. The different mutations affect the PNS, the CNS, or both, and phenotypic analyses indicate that the genes affect a wide range of steps in glial development, from fate specification through terminal differentiation. The analysis of these mutations will advance our understanding of myelination, and the mutants will serve as models of human diseases of myelin.  相似文献   

2.
The myelin sheath forms by the spiral wrapping of a glial membrane around the axon. The mechanisms responsible for this process are unknown but are likely to involve coordinated changes in the glial cell cytoskeleton. We have found that inhibition of myosin II, a key regulator of actin cytoskeleton dynamics, has remarkably opposite effects on myelin formation by Schwann cells (SC) and oligodendrocytes (OL). Myosin II is necessary for initial interactions between SC and axons, and its inhibition or down-regulation impairs their ability to segregate axons and elongate along them, preventing the formation of a 1:1 relationship, which is critical for peripheral nervous system myelination. In contrast, OL branching, differentiation, and myelin formation are potentiated by inhibition of myosin II. Thus, by controlling the spatial and localized activation of actin polymerization, myosin II regulates SC polarization and OL branching, and by extension their ability to form myelin. Our data indicate that the mechanisms regulating myelination in the peripheral and central nervous systems are distinct.  相似文献   

3.
How Histone Deacetylases Control Myelination   总被引:1,自引:0,他引:1  
Myelinated axons are a beautiful example of symbiotic interactions between two cell types: Myelinating glial cells organize axonal membranes and build their myelin sheaths to allow fast action potential conduction, while axons regulate myelination and enhance the survival of myelinating cells. Axonal demyelination, occurring in neurodegenerative diseases or after a nerve injury, results in severe motor and/or mental disabilities. Thus, understanding how the myelination process is induced, regulated, and maintained is crucial to develop new therapeutic strategies for regeneration in the nervous system. Epigenetic regulation has recently been recognized as a fundamental contributing player. In this review, we focus on the central mechanisms of gene regulation mediated by histone deacetylation and other key functions of histone deacetylases in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems.  相似文献   

4.
The velocity of the nerve impulse conduction of vertebrates relies on the myelin sheath, an electrically insulating layer that surrounds axons in both the central and peripheral nervous systems, enabling saltatory conduction of the action potential. Oligodendrocytes are the myelin-producing glial cells in the central nervous system. A deeper understanding of the molecular basis of myelination and, specifically, of the transport of myelin proteins, will contribute to the search of the aetiology of many dysmyelinating and demyelinating diseases, including multiple sclerosis. Recent investigations suggest that proteolipid protein (PLP), the major myelin protein, could reach myelin sheath by an indirect transport pathway, that is, a transcytotic route via the plasma membrane of the cell body. If PLP transport relies on a transcytotic process, it is reasonable to consider that this myelin protein could be associated with MAL2, a raft protein essential for transcytosis. In this study, carried out with the human oligodendrocytic cell line HOG, we show that PLP colocalized with green fluorescent protein (GFP)-MAL2 after internalization from the plasma membrane. In addition, both immunoprecipitation and immunofluorescence assays, indicated the existence of an interaction between GFP-MAL2 and PLP. Finally, ultrastructural studies demonstrated colocalization of GFP-MAL2 and PLP in vesicles and tubulovesicular structures. Taken together, these results prove for the first time the interaction of PLP and MAL2 in oligodendrocytic cells, supporting the transcytotic model of PLP transport previously suggested.  相似文献   

5.
The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.  相似文献   

6.
7.
One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same that we have used previously for motoneurons, muscle, and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination.  相似文献   

8.
In the mammalian nervous system, axons are commonly surrounded by myelin, a lipid-rich sheath that is essential for precise and rapid conduction of nerve impulses. In the peripheral nervous system (PNS), myelin sheaths are formed by Schwann cells which wrap around individual axons. While the tyrosine kinase receptors ERBB2 and ERBB3 are established mediators of peripheral myelination, less is known about the functions of the related epidermal growth factor receptor (EGFR) in the regulation of PNS myelination. Here, we report a peripheral neurodegenerative disease caused by increased EGFR activation. Specifically, we characterize a symmetric and distally pronounced, late-onset muscular atrophy in transgenic mice overexpressing the EGFR ligand epigen. Histological examination revealed a demyelinating neuropathy and axon degeneration, and molecular analysis of signaling pathways showed reduced protein kinase B (PKB, AKT) activation in the nerves of Epigen-tg mice, indicating that the muscular phenotype is secondary to PNS demyelination and axon degeneration. Crossing of Epigen-tg mice into an EGFR-deficient background revealed the pathology to be completely EGFR-dependent. This mouse line provides a new model for studying molecular events associated with early stages of peripheral neuropathies, an essential prerequisite for the development of successful therapeutic interventions.  相似文献   

9.
K P Giese  R Martini  G Lemke  P Soriano  M Schachner 《Cell》1992,71(4):565-576
We have used homologous recombination in embryonic stem cells to generate mice carrying a mutation in the gene encoding P0, an immunoglobulin-related recognition molecule and the major protein of peripheral nervous system myelin. These mice are deficient in normal motor coordination and exhibit tremors and occasional convulsions. Axons in their peripheral nerves are severely hypomyelinated and a subset of myelin-like figures and axons degenerate. The mutation leads to an abnormal regulation of some, but not all, molecules involved in myelination. These results demonstrate that P0 is essential for the normal spiraling, compaction, and maintenance of the peripheral myelin sheath and the continued integrity of associated axons. They further suggest that this protein conveys a signal that regulates Schwann cell gene expression.  相似文献   

10.
Myelination in the central nervous system provides a unique example of how cells establish asymmetry. The myelinating cell, the oligodendrocyte, extends processes to and wraps multiple axons of different diameter, keeping the number of wraps proportional to the axon diameter. Local regulation of protein synthesis represents one mechanism used to control the different requirements for myelin sheath at each axo-glia interaction. Prior work has established that β1-integrins are involved in the axoglial interactions that initiate myelination. Here, we show that integrin activation regulates translation of a key sheath protein, myelin basic protein (MBP), by reversing the inhibitory effect of the mRNA 3'UTR. During oligodendrocyte differentiation and myelination α6β1-integrin interacts with hnRNP-K, an mRNA-binding protein, which binds to MBP mRNA and translocates from the nucleus to the myelin sheath. Furthermore, knockdown of hnRNP-K inhibits MBP protein synthesis during myelination. Together, these results identify a novel pathway by which axoglial adhesion molecules coordinate MBP synthesis with myelin sheath formation.  相似文献   

11.
12.

Background

The biological process underlying axonal myelination is complex and often prone to injury and disease. The ratio of the inner axonal diameter to the total outer diameter or g-ratio is widely utilized as a functional and structural index of optimal axonal myelination. Based on the speed of fiber conduction, Rushton was the first to derive a theoretical estimate of the optimal g-ratio of 0.6 [1]. This theoretical limit nicely explains the experimental data for myelinated axons obtained for some peripheral fibers but appears significantly lower than that found for CNS fibers. This is, however, hardly surprising given that in the CNS, axonal myelination must achieve multiple goals including reducing conduction delays, promoting conduction fidelity, lowering energy costs, and saving space.

Methodology/Principal Findings

In this study we explore the notion that a balanced set-point can be achieved at a functional level as the micro-structure of individual axons becomes optimized, particularly for the central system where axons tend to be smaller and their myelin sheath thinner. We used an intuitive yet novel theoretical approach based on the fundamental biophysical properties describing axonal structure and function to show that an optimal g-ratio can be defined for the central nervous system (≈0.77). Furthermore, by reducing the influence of volume constraints on structural design by about 40%, this approach can also predict the g-ratio observed in some peripheral fibers (≈0.6).

Conclusions/Significance

These results support the notion of optimization theory in nervous system design and construction and may also help explain why the central and peripheral systems have evolved different g-ratios as a result of volume constraints.  相似文献   

13.
The peripheral nerve contains both nonmyelinating and myelinating Schwann cells. The interactions between axons, surrounding myelin, and Schwann cells are thought to be important for the correct functioning of the nervous system. To get insight into the genes involved in human myelination and maintenance of the myelin sheath and nerve, we performed a serial analysis of gene expression of human sciatic nerve and cultured Schwann cells. In the sciatic nerve library, we found high expression of genes encoding proteins related to lipid metabolism, the complement system, and the cell cycle, while cultured Schwann cells showed mainly high expression of genes encoding extracellular matrix proteins. The results of our study will assist in the identification of genes involved in maintenance of myelin and peripheral nerve and of genes involved in inherited peripheral neuropathies.  相似文献   

14.
Myelin is the multi-layered glial sheath around axons in the vertebrate nervous system. Myelinating glia develop and function in intimate association with neurons and neuron-glial interactions control much of the life history of these cells. However, many of the factors that regulate key aspects of myelin development and maintenance remain unknown. To discover new molecules that are important for glial development and myelination, we undertook a screen of zebrafish mutants with previously characterized neural defects. We screened for myelin basic protein (mbp) mRNA by in situ hybridization and identified four mutants (neckless, motionless, iguana and doc) that lacked mbp expression in parts of the peripheral and central nervous systems (PNS or CNS), despite the presence of axons. In all four mutants electron microscopy revealed that myelin-forming glia were present and had formed loose wraps around axons but did not form compact myelin. We found that addition of exogenous retinoic acid (RA) rescued mbp expression in neckless mutant embryos, which lack endogenous RA synthesis. Timed application of the RA synthesis inhibitor DEAB to wild type embryos showed that RA signalling is required at least 48 h before the onset of myelin protein synthesis in both CNS and PNS.  相似文献   

15.
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).Axons conduct electrical signals, called action potentials (APs), among neurons in a circuit in response to sensory input, and between motor neurons and muscles. In mammals and other vertebrates, many axons are myelinated. Myelin, made by Schwann cells and oligodendrocytes in the peripheral nervous system (PNS) and central nervous system (CNS), respectively, is a multilamellar sheet of glial membrane that wraps around axons to increase transmembrane resistance and decrease membrane capacitance. Although myelin is traditionally viewed as a passive contributor to nervous system function, it is now recognized that myelinating glia also play many active roles including regulation of axon diameter, axonal energy metabolism, and the clustering of ion channels at gaps in the myelin sheath called nodes of Ranvier. Together, the active and passive properties conferred on axons by myelin, result in axons with high AP conduction velocities, low metabolic demands, and reduced space requirements as compared with unmyelinated axons. Thus, myelin and the clustering of ion channels in axons permitted the evolution of the complex nervous systems found in vertebrates. This review highlights the current understanding of the axonal intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the PNS and CNS.  相似文献   

16.
IN peripheral nerve, most axons with diameters of less than 1 µm do not have myelin sheaths, while most fibres more than 1 µm in diameter are myelinated1,2. In the central nervous system, axons as small as 0.2 µm in diameter may be myelinated2–5. In his paper on the effects of myelin on conduction velocity, Rushton6 concluded that 1 µm is the “critical diameter” above which “myelin increases conduction velocity” and below which “conduction is faster without myelination”. This conclusion is referred to widely (see, for example, refs. 7–9). In this communication we demonstrate that the analysis leading to this conclusion is based on morphological data10 which do not apply either to central or to peripheral fibres, so that myelinated fibres considerably smaller than 1 µm might be expected to conduct more rapidly than non-myelinated fibres of similar size.  相似文献   

17.
The myelin of central and peripheral nervous system of UDP-galactose-ceramide galactosyltransferase deficient mice (cgt -/-) is completely depleted of its major lipid constituents, galactocerebrosides and sulfatides. The deficiency of these glycolipids affects the biophysical properties of the myelin sheath and causes the loss of the rapid saltatory conduction velocity of myelinated axons. With the onset of myelination, null mutant cgt -/- mice develop fatal neurological defects. CNS and PNS analysis of cgt -/- mice revealed (1) hypomyelination of axons of the spinal cord and optic nerves, but no apoptosis of oligodendrocytes, (2) redundant myelin in younger mice leading to vacuolated nerve fibers in cgt -/- mice, (3) the occurrence of multiple myelinated CNS axons, and (4) severely distorted lateral loops in CNS paranodes. The loss of saltatory conduction is not associated with a randomization of voltage-gated sodium channels in the axolemma of PNS fibers. We conclude that cerebrosides (GalC) and sulfatides (sGalC) play a major role in CNS axono-glial interaction. A close axono-glial contact is not a prerequisite for the spiraling and compaction process of myelin. Axonal sodium channels remain clustered at the nodes of Ranvier independent of the change in the physical properties of myelin membrane devoid of galactosphingolipids. Increased intracellular concentrations of free ceramides do not trigger apoptosis of oligodendrocytes.  相似文献   

18.
Myelination is an essential prerequisite for the nervous system to transmit an impulse efficiently by a saltatory conduction. In the peripheral nervous system (PNS), Schwann cells (SCs) engage in myelination. However, a detailed molecular mechanism underlying myelination still remains unclear. In this study, we hypothesized that the primary cilia of SCs are the regulators of Hedgehog (Hh) signaling-mediated myelination. To confirm our hypothesis, we used mouse dorsal root ganglion (DRG)/SC co-cultures, wherein the behavior of SCs could be analyzed by maintaining the interaction of SCs with DRG neurons. Under these conditions, SCs had primary cilia, and Hh signaling molecules accumulated on the primary cilia. When the SCs were stimulated by the addition of desert hedgehog or smoothened agonist, formation of myelin segments on the DRG axons was facilitated. On the contrary, upon administration of cyclopamine, an inhibitor of Hh signaling, myelin segments became comparable to those of controls. Of note, the ratio of SCs harboring primary cilium reached the highest point during the early phase of myelination. Furthermore, the strongest effects of Hh on myelination were encountered during the same stage. These results collectively indicate that Hh signaling regulates myelin formation through primary cilia in the PNS.  相似文献   

19.
Cellular Mechanism of Myelination in the Central Nervous System   总被引:8,自引:7,他引:1       下载免费PDF全文
A study of myelination with electron microscopy has been carried out on the spinal cord of young rats and cats. In longitudinal and transverse sections the intimate relationship of the growing axons with the oligodendrocytes was observed. Early naked axons appear to be embedded within the cytoplasm and processes of the oligodendrocytes from which they are limited only by the intimately apposed membranes of both elements (axon-oligocytic membrane). In a transverse section several axons are observed to be in a single oligodendrocyte. The process of myelination consists in the laying down, within the cytoplasm of the oligodendrocyte and around the axon, of concentric membranous myelin layers. The first of these layers is deposited at a certain distance (200 to 600 A or more) from the axon-oligocytic membrane. This and all the other subsequently formed membranes have higher electron density and are apparently formed by the coalescence and fusion of vesicles (of 200 to 800 A) and membranes found in large amounts within the cytoplasm of the oligodendrocytes. At an early stage the myelin layers may be discontinuous and some vesicular material may even be trapped among them or between the myelin proper and the axon-oligocytic membrane. Then, when the 8th to 10th layer is deposited, the complete coalescence and alignment of the lamellae leads to the characteristic orderly multilayered organization of the myelin sheath. Myelination in the central nervous system appears to be a process of membrane synthesis within the cytoplasm of the oligodendrocyte and not a result of the wrapping of the plasma membranes as postulated in Geren's hypothesis for the peripheral nerve fibers. The possible participation of Schwann cell cytoplasm in peripheral myelination is now being investigated.  相似文献   

20.
A study of myelination with electron microscopy has been carried out on the spinal cord of young rats and cats. In longitudinal and transverse sections the intimate relationship of the growing axons with the oligodendrocytes was observed. Early naked axons appear to be embedded within the cytoplasm and processes of the oligodendrocytes from which they are limited only by the intimately apposed membranes of both elements (axon-oligocytic membrane). In a transverse section several axons are observed to be in a single oligodendrocyte. The process of myelination consists in the laying down, within the cytoplasm of the oligodendrocyte and around the axon, of concentric membranous myelin layers. The first of these layers is deposited at a certain distance (200 to 600 A or more) from the axon-oligocytic membrane. This and all the other subsequently formed membranes have higher electron density and are apparently formed by the coalescence and fusion of vesicles (of 200 to 800 A) and membranes found in large amounts within the cytoplasm of the oligodendrocytes. At an early stage the myelin layers may be discontinuous and some vesicular material may even be trapped among them or between the myelin proper and the axon-oligocytic membrane. Then, when the 8th to 10th layer is deposited, the complete coalescence and alignment of the lamellae leads to the characteristic orderly multilayered organization of the myelin sheath. Myelination in the central nervous system appears to be a process of membrane synthesis within the cytoplasm of the oligodendrocyte and not a result of the wrapping of the plasma membranes as postulated in Geren's hypothesis for the peripheral nerve fibers. The possible participation of Schwann cell cytoplasm in peripheral myelination is now being investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号