首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transferrin receptor (TfR) of reticulocytes is released in vesicular form (exosomes) during their maturation to erythrocytes. The heat shock cognate 70-kDa protein (Hsc70) has been demonstrated to interact with the cytosolic domain of the TfR and could thus trigger the receptor toward this secretion pathway. We investigated the characteristics of the interaction between Hsc70 and the TfR in exosomes with an in vitro binding assay using TfR immobilized on Sepharose beads and purified Hsc70. The results show that Hsc70 binds to exosomal TfR with characteristics expected of a chaperone/peptide interaction. We demonstrated that heat-denatured luciferase competed for in vitro binding, dependent on the nucleotide bound to Hsc70, and that this interaction activates the ATPase activity of Hsc70. Moreover, we used immunosuppressive agents that interact with Hsc70, thus decreasing Hsc70 binding to TfR in our in vitro binding assay and enabling us to assess the role of this interaction in vivo during reticulocyte maturation.  相似文献   

2.
Co-immunoprecipitation of Hsp101 with cytosolic Hsc70.   总被引:1,自引:0,他引:1  
In animals and yeast, cytosolic Hsp70s function in concert with other molecular chaperones. Hsp70 is a major chaperone in the Hsp90 multi-chaperone complexes that participate in maturation of steroid receptors and several other proteins. Hsp70s also appear to form a complex with Hsp90 and Hsp110/sHsp. A 100 kDa protein was co-immunoprecipitated with cytosolic Hsc70 from maize seedlings (Zea mays). The presence of this complex was further confirmed using gel-filtration chromatography. Mass spectrometric analysis showed that the 100 kDa protein is homologous with Arabidopsis Hsp101. Treatment with apyrase enhanced the co-immunoprecipitation of Hsp101 with Hsc70, while ATP had the opposite effect. In the presence of carboxymethylated alpha-lactalbumin (CMLA), which is permanently unfolded, the complex dissociated. Based on these observations, it is concluded that Hsc70 and Hsp101 are present in a complex in the plant cytosol.  相似文献   

3.
Hsp70 molecular chaperones have been shown to play an important role in helping cells to cope with adverse environments, especially in response to high temperatures. The molecular chaperone function of Hsc70 at low temperature was investigated. A cold-inducible spinach cytosolic Hsc70 was subcloned into a protein expression vector and the recombinant protein was expressed in bacterial cells. Recombinant Hsc70 bound a permanently unfolded substrate: alpha-carboxymethylated lactalbumin (CMLA) in the presence of 3 mM ATP and MgCl(2) at low temperature (4 and -4 degrees C). Radiolabeling with (35)S-Met and (35)S-Cys and immunoprecipitation with cytosolic Hsc70 monoclonal antibodies showed that there were several proteins co-immunoprecipitated at low temperature (4 and -4 degrees C) but not at room temperature. Enhanced co-purification of sHsp17.7 with Hsc70 at low temperature was observed and suggests that co-chaperone interactions can contribute to molecular chaperone function during cold stress. These results suggest that the molecular chaperone Hsc70 may have a functional role in plants during low temperature stress.  相似文献   

4.
Refolding of the acid-unfolded precursor to mitochondrial aspartate aminotransferase (pmAAT) is inhibited when cytosolic Hsc70 is included in the refolding reaction (Artigues, A., Iriarte, A., and Martinez-Carrion, M. (1997) J. Biol. Chem. 272, 16852-16861). At low molar excess of Hsc70 pmAAT is recovered in insoluble aggregates containing equal amounts of Hsc70. However, in the presence of a large excess of Hsc70, refolding of pmAAT is still arrested, but the enzyme remains in solution. Similar behavior was observed with two other cytosolic chaperones, bovine Hsp90 and yeast Ydj1. Coimmunoprecipitation of pmAAT using Hsc70 antibodies confirmed the formation of soluble Hsc70-pmAAT complexes at high concentrations of the chaperone. Data from analytical centrifugation, sedimentation in glycerol gradients, and partial purification of the soluble complexes indicate that multiple Hsc70 molecules bind per pmAAT polypeptide chain. The absence of catalytic activity together with the protease susceptibility of pmAAT bound to Hsc70, Hsp90, or Ydj1 suggest that these chaperones bind and maintain pmAAT in a partially unfolded state, analogous to the import-competent conformation of the protein synthesized in cell-free extracts. Remarkably, the purified pmAAT bound to Hsc70 or Ydj1, but not to Hsp90, is imported by isolated mitochondria in a reticulocyte lysate-dependent manner. Thus, both Hsc70 and Ydj1 can trap an import-competent folding intermediate of pmAAT, but productive binding and import into mitochondria require the collaboration of additional cytosolic factors from the lysate.  相似文献   

5.
Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.  相似文献   

6.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

7.
Murine stress-inducible protein 1 (mSTI1) is a co-chaperone that is homologous with the human Hsp70/Hsp90-organizing protein (Hop). Guided by Hop structural data and sequence alignment analyses, we have used site-directed mutagenesis, co-precipitation assays, circular dichroism spectroscopy, steady-state fluorescence, and surface plasmon resonance spectroscopy to both qualitatively and quantitatively characterize the contacts necessary for the N-terminal tetratricopeptide repeat domain (TPR1) of mSTI1 to bind to heat shock cognate protein 70 (Hsc70) and to discriminate between Hsc70 and Hsp90. We have shown that substitutions in the first TPR motif of Lys(8) or Asn(12) did not affect binding of mSTI1 to Hsc70, whereas double substitution of these residues abrogated binding. A substitution in the second TPR motif of Asn(43) lowered but did not abrogate binding. Similarly, a deletion in the second TPR motif coupled with a substitution of Lys(8) or Asn(12) reduced but did not abrogate binding. These results suggest that mSTI1-Hsc70 interaction requires a network of interactions not only between charged residues in the TPR1 domain of mSTI1 and the EEVD motif of Hsc70 but also outside the TPR domain. We propose that the electrostatic interactions in the first TPR motif made by Lys(8) or Asn(12) define part of the minimum interactions required for successful mSTI1-Hsc70 interaction. Using a truncated derivative of mSTI1 incapable of binding to Hsp90, we substituted residues on TPR1 potentially involved in hydrophobic contacts with Hsc70. The modified protein had reduced binding to Hsc70 but now showed significant binding capacity for Hsp90. In contrast, topologically equivalent substitutions on a truncated derivative of mSTI1 incapable of binding to Hsc70 did not confer Hsc70 specificity on TPR2A. Our results suggest that binding of Hsc70 to TPR1 is more specific than binding of Hsp90 to TPR2A with serious implications for the mechanisms of mSTI1 interactions with Hsc70 and Hsp90 in vivo.  相似文献   

8.
Soybean seeds [Glycine max (L.) Merr.] synthesize de novo andaccumulate several non-storage, soluble polypeptides duringnatural and precocious seed maturation. These polypeptides havepreviously been coined ‘maturation polypeptides’.The objective of this study was to determine the fate of maturationpolypeptides in naturally and precociously matured soybean seedsduring rehydration, germination, and seedling growth. Developingsoybean seeds harvested 35 d after flowering (mid-development)were precociously matured through controlled dehydration, whereasnaturally matured soybean seeds were harvested directly fromthe plant. Seeds were rehydrated with water for various timesbetween 5 and 120 h. Total soluble proteins and proteins radio-labelledin vivo were extracted from the cotyledons and embryonic axesof precociously and naturally matured and rehydrated seed tissuesand analyzed by one-dimensional PAGE and fluorography. The resultsindicated that three of the maturation polypeptides (21, 31and 128 kDa) that had accumulated in the maturing seeds (maturationpolypeptides) continued to be synthesized during early stagesof seed rehydration and germination (5–30 h after imbibition).However, the progression from seed germination into seedlinggrowth (between 30 and 72 h after imbibition) was marked bythe cessation of synthesis of the maturation polypeptides followedby the hydrolysis of storage polypeptides that had been synthesizedand accumulated during seed development. This implied a drasticredirection in seed metabolism for the precociously maturedseeds as these seeds, if not matured early, would have continuedto synthesize storage protein reserves. Glycine max (L.) Merr, soybean, cotyledons, maturation, germination/seedling growth  相似文献   

9.
Hsc70's expected binding site on helix II of the J domain of T antigens appears to be blocked in its structure bound to tumor suppressor pRb. We used NMR to map where mammalian Hsc70 binds the J domain of murine polyomavirus T antigens (PyJ). The ATPase domain of Hsc70 unexpectedly has its biggest effects on the NMR peak positions of the C-terminal end of helix III of PyJ. The Hsc70 ATPase domain protects the C-terminal end of helix III of PyJ from an uncharged paramagnetic probe of chelated Gd(III), clearly suggesting the interface. Effects on the conserved HPD loop and helix II of PyJ are smaller. The NMR results are supported by a novel assay of Hsc70's ATP hydrolysis showing that mutations of surface residues in PyJ helix III impair PyJ-dependent stimulation of Hsc70 activity. Evolutionary trace analysis of J domains suggests that helix III usually may join helix II in contributing specificities for cognate hsp70s. Our novel evidence implicating helix III differs from evidence that Escherichia coli DnaK primarily affects helix II and the HPD loop of DnaJ. We find the pRb-binding fragment of E2F1 to be intrinsically unfolded and a good substrate for Hsc70 in vitro. This suggests that E2F1 could be a substrate for Hsc70 recruited by T antigen to an Rb family member. Importantly, our results strengthen the chaperone hypothesis for E2F release from an Rb family member by Hsc70 recruited by large T antigen. That is, it now appears that Hsc70 can freely access helix III and the HPD motif of large T antigen bound to an Rb family member.  相似文献   

10.
Hsc20 is a 20 kDa J-protein that regulates the ATPase activity and peptide-binding specificity of Hsc66, an hsp70-class molecular chaperone. We report herein the crystal structure of Hsc20 from Escherichia coli determined to a resolution of 1.8 A using a combination of single isomorphous replacement (SIR) and multi-wavelength anomalous diffraction (MAD). The overall structure of Hsc20 consists of two distinct domains, an N-terminal J-domain containing residues 1-75 connected by a short loop to a C-terminal domain containing residues 84-171. The structure of the J-domain, involved in interactions with Hsc66, resembles the alpha-topology of J-domain fragments of Escherichia coli DnaJ and human Hdj1 previously determined by solution NMR methods. The C-terminal domain, implicated in binding and targeting proteins to Hsc66, consists of a three-helix bundle in which two helices comprise an anti-parallel coiled-coil. The two domains make contact through an extensive hydrophobic interface ( approximately 650 A(2)) suggesting that their relative orientations are fixed. Thus, Hsc20, in addition to its role in the regulation of the ATPase activity of Hsc66, may also function as a rigid scaffold to facilitate positioning of the protein substrates targeted to Hsc66.  相似文献   

11.
Eukaryotes express several cytoplasmic HSP70 genes, and their encoded proteins participate in diverse cellular processes. Three cDNAs encoding highly expressed cytoplasmic HSP70 homologues from Pisum sativum were cloned and characterized. They were designated PsHSP71.2, PsHSC71.0, and PsHSP70b. These HSP70 genes have different expression profiles in leaves: PsHSP71.2 is observed only in response to heat stress, PsHSC71.0 is present constitutively, and PsHSP70b is weakly constitutively expressed, but induced strongly in response to heat stress. In addition to being heat induced, the PsHSP71.2 mRNA is also expressed in zygotic, but not maternal organs of developing pea seeds, while PsHSC71.0 and PsHSP70b mRNAs are present in maternal and zygotic organs throughout seed development. Immunoblot analysis of parallel protein samples detects a 70 kDa polypeptide in all samples, and a 72 kDa polypeptide that corresponds to the PsHSP71.2 gene product is observed in cotyledons beginning at mid-maturation and in axes beginning between late maturation and desiccation. This polypeptide is not detected in the seed coat. The 72 kDa polypeptide remains abundant in both cotyledons and axes through germination, but declines substantially between 48 and 72 h after the onset of imbibition. Differential control of HSP70 expression during heat stress, seed maturation, and germination is consistent with the hypothesis that there are functional distinctions between cytoplasmic HSP70s.  相似文献   

12.
Molecular chaperones play a fundamental role in cellular protein folding. Using intact mammalian cells we examined the contribution of cytosolic chaperones to de novo folding. A large fraction of newly translated polypeptides associate transiently with Hsc70 and the chaperonin TRiC/CCT during their biogenesis. The substrate repertoire observed for Hsc70 and TRiC is not identical: Hsc70 interacts with a wide spectrum of polypeptides larger than 20 kDa, while TRiC associates with a diverse set of proteins between 30 and 60 kDa. Overexpression of a bacterial chaperonin 'trap' that irreversibly captures unfolded polypeptides did not interrupt the productive folding pathway. The trap was unable to bind newly translated polypeptides, indicating that folding in mammalian cells occurs without the release of non-native folding intermediates into the bulk cytosol. We conclude that de novo protein folding occurs in a protected environment created by a highly processive chaperone machinery and is directly coupled to translation.  相似文献   

13.
The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.  相似文献   

14.
The chaperone Hsc70 drives the clathrin assembly–disassembly cycle forward by stimulating dissociation of a clathrin lattice. A J‐domain containing co‐chaperone, auxilin, associates with a freshly budded clathrin‐coated vesicle, or with an in vitro assembled clathrin coat, and recruits Hsc70 to its specific heavy‐chain‐binding site. We have determined by electron cryomicroscopy (cryoEM), at about 11 Å resolution, the structure of a clathrin coat (in the D6‐barrel form) with specifically bound Hsc70 and auxilin. The Hsc70 binds a previously analysed site near the C‐terminus of the heavy chain, with a stoichiometry of about one per three‐fold vertex. Its binding is accompanied by a distortion of the clathrin lattice, detected by a change in the axial ratio of the D6 barrel. We propose that when Hsc70, recruited to a position close to its target by the auxilin J‐domain, splits ATP, it clamps firmly onto its heavy‐chain site and locks in place a transient fluctuation. Accumulation of the local strain thus imposed at multiple vertices can then lead to disassembly.  相似文献   

15.
Mitochondrial preproteins that are imported via the translocase of the mitochondrial outer membrane (Tom)70 receptor are complexed with cytosolic chaperones before targeting to the mitochondrial outer membrane. The adenine nucleotide transporter (ANT) follows this pathway, and its purified mature form is identical to the preprotein. Purified ANT was reconstituted with chaperones in reticulocyte lysate, and bound proteins were identified by mass spectrometry. In addition to 70-kDa heat-shock cognate protein (Hsc70) and 90-kDa heat-shock protein (Hsp90), a specific subset of cochaperones were found, but no mitochondria-specific targeting factors were found. Interestingly, three different Hsp40-related J-domain proteins were identified: DJA1, DJA2, and DJA4. The DJAs bound preproteins to different extents through their C-terminal regions. DJA dominant-negative mutants lacking the N-terminal J-domains impaired mitochondrial import. The mutants blocked the binding of Hsc70 to preprotein, but with varying efficiency. The DJAs also showed significant differences in activation of the Hsc70 ATPase and Hsc70-dependent protein refolding. In HeLa cells, the DJAs increased new protein folding and mitochondrial import, although to different extents. No single DJA was superior to the others in all aspects, but each had a profile of partial specialization. The Hsp90 cochaperones p23 and Aha1 also regulated Hsp90-preprotein interactions. We suggest that multiple cochaperones with similar yet partially specialized properties cooperate in optimal chaperone-preprotein complexes.  相似文献   

16.
17.
The molecular chaperone, Hsc70, together with its co‐factor, auxilin, facilitates the ATP‐dependent removal of clathrin during clathrin‐mediated endocytosis in cells. We have used cryo‐electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401‐910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly .  相似文献   

18.
We previously described a cell surface reactive monoclonal antibody, MAb OC.10, which recognizes an epitope shared by rat fetal liver ductal cells, hepatic progenitor cells, mature cholangiocytes, and hepatocellular carcinomas (HCC). Here, intrasplenic injection of MAb OC.10 into newborn rats was shown by immunofluorescence microscopy to strongly label intrahepatic bile ducts. Furthermore, the in situ labeling of intrahepatic cholangiocytes by injecting MAb OC.10 increased the number of intraportal and intralobular bile ducts with well-defined lumens when compared to IgM-injected control animals. The antigen for MAb OC.10 was identified by mass spectrometry as Hsc70, a constitutively expressed heat shock protein belonging to the HSP70 family. Immunoblot analysis demonstrated that MAb OC.10 reacted with recombinant bovine Hsc70 protein, with protein immunoprecipitated from rat bile duct epithelial (BDE) cell lysates with monoclonal anti-Hsc70 antibody, and with Hsc70-FLAG protein over-expressed in human 293T cells. In addition, Hsc70-specific small interfering RNA reduced the amount of OC.10 antigen expressed in nucleofected BDE cells. Consistent with the specificity of MAb OC.10 for Hsc70, heat shock did not induce OC.10 expression in BDE cells, a characteristic of Hsp70. Immunofluorescence with BDE cells further suggested that MAb OC.10 binds a novel cell surface epitope of Hsc70. This was in contrast to a commercially available monoclonal anti-Hsc70 antibody that showed strong cytosolic reactivity. These findings demonstrate that presentation of the OC.10 epitope differs between cytosolic and surface forms of Hsc70 and may suggest distinct differences in protein conformation or epitope availability determined in part by protein–protein or protein–lipid interactions. Phage display and pepscan analysis mapped the epitope for MAb OC.10 to the N-terminal 340–384 amino acids of the ATPase domain of rat Hsc70. These findings suggest that MAb OC.10 recognizes an epitope on rat Hsc70 when presented on the cell surface that promotes morphogenic maturation of bile ducts in newborn rat liver. Furthermore, since we have shown previously that the OC.10 antigen is expressed on HCC subpopulations with oval cell characteristics, our current results indicate that Hsc70 has the potential to be expressed on the surface of certain tumor cells.  相似文献   

19.
Hsp70 chaperones assist protein folding by reversible interaction with extended hydrophobic segments of substrate polypeptides. We investigated the contribution of three structural elements of the substrate- binding cavity of the Escherichia coli homologue, DnaK, to substrate specificity by investigating mutant DnaK proteins for binding to cellulose-bound peptides. Deletion of the C-terminal subdomain (Delta539-638) and blockage of the access to the hydrophobic pocket in the substrate-binding cavity (V436F) did not change the specificity, although the latter exchange reduced the affinity to all peptides investigated. Mutations (A429W, M404A/A429W) that affect the formation of a hydrophobic arch spanning over the bound substrate disfavored DnaK binding, especially to peptides with short stretches of consecutive hydrophobic residues flanked by acidic residues, while binding to most other peptides remained unchanged. The arch thus contributes to the substrate specificity of DnaK. This finding is of particular interest, since of all the residues of the substrate-binding cavity that contact bound substrate, only the arch-forming residues show significant variation within the Hsp70 family.  相似文献   

20.
Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain, with propensity to adopt α-helical structure, interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号