首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress is a key factor regulating the systemic pathophysiological effects associated with periodontitis. Resveratrol is a phytochemical with antioxidant and anti-inflammatory properties that can reduce oxidative stress and inflammation. We hypothesized that resveratrol may prevent the progression of periodontitis and reduce systemic oxidative stress through the activation of the sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) and the nuclear factor E2-related factor 2 (Nrf2)/antioxidant defense pathways. Three groups of male Wistar rats (periodontitis treated with melinjo resveratrol, periodontitis without resveratrol, and control rats with no periodontitis or resveratrol treatment) were examined. A ligature was placed around the maxillary molars for 3 weeks to induce periodontitis, and the rats were then given drinking water with or without melinjo resveratrol. In rats with periodontitis, ligature placement induced alveolar bone resorption, quantified using three-dimensional images taken by micro-CT, and increased proinflammatory cytokine levels in gingival tissue. Melinjo resveratrol intake relieved alveolar bone resorption and activated the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in inflamed gingival tissues. Further, melinjo resveratrol improved the systemic levels of 8-hydroxydeoxyguanosine, dityrosine, nitric oxide metabolism, nitrotyrosine, and proinflammatory cytokines. We conclude that oral administration of melinjo resveratrol may prevent the progression of ligature-induced periodontitis and improve systemic oxidative and nitrosative stress.  相似文献   

2.
Our aim was to assess the degree of oxidative stress in patients with periodontitis by measuring their levels of thiobarbituric acid reactive substances (TBARS), enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GSHPx)), and non-enzymatic antioxidants (vitamins E and C, reduced glutathione (GSH)). This study was conducted on 25 adult chronic periodontitis sufferers who were patients in Rajah Muthiah Dental College and Hospital, Annamalai University. The levels of TBARS and non-enzymatic antioxidants, and the activities of enzymatic antioxidants in the patients' plasma, erythrocytes and gingival tissues were assayed using specific colorimetric methods. The periodontitis sufferers had a significantly higher TBARS level than the healthy subjects. In the plasma, erythrocytes, erythrocyte membranes and gingival tissues of the periodontitis sufferers, enzymatic antioxidant activities were found to be significantly higher, whereas the levels of non-enzymatic antioxidants were significantly lower (except for reduced glutathione in the gingival tissues) relative to the parameters found for healthy subjects. The disturbance in the endogenous antioxidant defense system due to over-production of lipid peroxidation products at inflammatory sites can be related to a higher level of oxidative stress in patients with periodontitis.  相似文献   

3.
Estrogen can putatively act as an antioxidant and protect tissues from exercise-induced oxidative stress. To test the in vivo efficacy of estrogen, the effects of 2 weeks of daily estrogen (40 microg x kg(-1) body weight beta-estradiol 3-benzoate) injection on indices of immediate postexercise oxidative stress and antioxidant status were determined in adult male rats, with and without 8 weeks of prior dietary vitamin E deprivation. The treadmill running protocol (60 min at 21 m x min(-1), 12% grade) induced significant oxidative stress as indicated by muscle glutathione status. Estrogen administration had little effect on postexercise tissue glutathione status, superoxide dismutase and glutathione peroxidase activity, and vitamin E levels. Estrogen administration induced significant reductions in muscle, liver, and heart vitamin C concentrations following exercise, as well as in unexercised male rats. Tissue vitamin C loss was not directly mediated through liver glycogen or glutathione status. Thus, estrogen administration generally did not appear to influence postexercise tissue indices of oxidative stress or antioxidant status and may have contributed to a decline in overall antioxidant protection by inducing losses in tissue vitamin C content.  相似文献   

4.
Free radicals produced during hyperthermic stress and aging are thought to play an important role in the degenerative process. To investigate the correlation between oxidative damages caused by acute heat exposure or aging, and the protective effect of vitamin C in vivo, we determined the levels of oxidative protein damage, lipid peroxidation, content of endogenous ascorbic acid, and glutathione in the plasma of young and old Wistar rats, subjected or not-subjected to acute heat stress. The results showed that the level of oxidative protein damage (measured as carbonyl content) in plasma was significantly higher in elderly and in heat-exposed animals. Vitamin C treatment led to inhibition on carbonyl production much more pronounced in young heat-exposed than in aged heat-exposed rats. Aging and acute heat exposure correlated positively with increased production of lipid hydroperoxides in rats plasma, but there were no significant differences in lipid hydroperoxides levels between young and old heat-exposed rats, depending on the treatment with vitamin C. Multiple backward regression analysis showed ascorbic acid to be the only determining variable of lipid hydroperoxides levels in unexposed rats. It was concluded that aging and heat exposure instigate an increase of lipid peroxidation and protein oxidation in rat plasma, while vitamin C supplementation significantly counteracts these changes.  相似文献   

5.
Present study examines effects of curcumin and vitamin E on oxidative stress parameters, antioxidant defence enzymes and oxidized (GSSG) and reduced glutathione (GSH) levels in testis of L-thyroxine (T4)-induced hyperthyroid rats. The oxidative stress in T4-treated rat testis was evident from elevation in oxidative stress parameters such as lipid peroxide and protein carbonyl contents, decrease in superoxide dismutase (SOD) and catalase (CAT) activities and increase in glutathione peroxidase (GPx) activity. This is accompanied with decrease in number and mortality of epididymal sperms. When the T4-treated rats were fed with vitamin E and/or curcumin, the lipid peroxide and protein carbonyl contents in crude homogenates of testes decreased to normal level. Treatment of curcumin and/or vitamin E to T4-treated rats resulted in elevation of SOD level in postmitochondrial fraction (PMF) and mitochondrial fraction (MF) and CAT in PMF, with decreased GPx activity in MF. However, curcumin or vitamin E was unable to change GPx activity alone but in together they elevated the GPx in PMF of T4-treated rat testis. Both the antioxidants are incapable of producing significant changes in GSH:GSSG ratio of PMF of T4-treated rats. In MF, GSH:GSSG ratio elevated and decreased respectively by curcumin and vitamin E treatments to T4-treated rats, however, in together these antioxidants caused an elevated GSH:GSSG ratio with a value less than when vitamin E given alone to T4-treated rats. Vitamin E not the curcumin elevates total sperm count and percentage of live sperm impaired by hyperthyroid state. In summary, both vitamin E and curcumin are efficient in protecting testis from oxidative stress generated by T4 mainly in restoring antioxidant enzymes to the level of euthyroid animals up to some extent but vitamin E is more efficient than curcumin.  相似文献   

6.
It has been suggested that oxidative stress plays an important role in the pathophysiology of traumatic brain injury (TBI). N-acetylcysteine (NAC) and selenium (Se) display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties although there is no report on oxidative stress, antioxidant vitamin, interleukin-1 beta (IL)-1β and IL-4 levels in brain and blood of TBI-induced rats. We investigated effects of NAC and Se administration on physical injury-induced brain toxicity in rats. Thirty-six male Sprague–Dawley rats were equally divided into four groups. First and second groups were used as control and TBI groups, respectively. NAC and Se were administrated to rats constituting third and forth groups at 1, 24, 48 and 72 h after TBI induction, respectively. At the end of 72 h, plasma, erythrocytes and brain cortex samples were taken. TBI resulted in significant increase in brain cortex, erythrocytes and plasma lipid peroxidation, total oxidant status (TOS) in brain cortex, and plasma IL-1β values although brain cortex vitamin A, β-carotene, vitamin C, vitamin E, reduced glutathione (GSH) and total antioxidant status (TAS) values, and plasma vitamin E concentrations, plasma IL-4 level and brain cortex and erythrocyte glutathione peroxidase (GSH-Px) activities decreased by TBI. The lipid peroxidation and IL-1β values were decreased by NAC and Se treatments. Plasma IL-4, brain cortex GSH, TAS, vitamin C and vitamin E values were increased by NAC and Se treatments although the brain cortex vitamin A and erythrocyte GSH-Px values were increased through NAC only. In conclusion, NAC and Se caused protective effects on the TBI-induced oxidative brain injury and interleukin production by inhibiting free radical production, regulation of cytokine-dependent processes and supporting antioxidant redox system.  相似文献   

7.
We tested the hypothesis of whether high dietary protein intake is linked to oxidative stress as measured by the concentration of reactive carbonyl residues in plasma proteins. Three groups of male Wistar rats ( approximately 230 g, n = 10) were fed either 15% (15C), 30% (30C), or 60% (60C) casein diets over a period of 18 weeks. For comparison, a vitamin E deficient diet (60C-E) based on diet 60C was given to an additional group to provoke oxidative stress. Concentrations of alpha-tocopherol in plasma and of reactive carbonyl residues in total plasma proteins were measured by high performance liquid chromatography using fluorescence and by diode array detection after 2,4-dinitrophenylhydrazine reaction, respectively. After 1 week the concentration of reactive carbonyl residues in plasma proteins was found to be significantly (P < 0.05) higher in the 60C and 60C-E groups ( approximately 2.7 nmol/mg protein) compared with the 15C and 30C groups ( approximately 1.7 nmol/mg protein). After 14 weeks the 15C (3.4 +/- 1.2 nmol/mg protein) and 60C-E groups (3.9 +/- 1.7 nmol/mg protein) showed a significantly increased concentration of reactive carbonyl residues in plasma protein compared with the 30C and 60C groups (2.5 +/- 1.0 nmol/mg protein; 2.6 +/- 0.8 nmol/mg protein). As expected, chronic vitamin E deficiency (60C-E) resulted in significantly decreased alpha-tocopherol concentrations (3.91 +/- 2.42 micromol/mL vs. 31.3 +/- 4.8 micromol/mL) and a higher concentration of reactive carbonyl residues in plasma proteins. These results do not support the hypothesis that a chronic intake of high-protein diets leads to oxidative stress in adult rats. However, in the non-adapted state (1 week) a high protein intake contributes to oxidative modifications of protein-bound amino acid residues.  相似文献   

8.
In the forebrain from male Wistar rats aged 5, 15 and 25 months, age-related putative alterations in the glutathione system (reduced and oxidized glutathione; redox index) were chronically induced by the administration in drinking water of free radical generators (hydrogen peroxide, ferrous chloride) or of inhibitors of endogenous free radical defenses (diethyl-dithio-carbamate, an inhibitor of superoxide dismutase activity). In hydrogen peroxide administered rats, both reduced glutathione and the cerebral glutathione redox index markedly declined as a function of aging, whereas oxidized glutathione consistently increased. In contrast, chronic iron intake failed to modify the reduced glutathione in forebrain from the rats of the different ages tested, whereas the oxidized glutathione was increased in the older brains. The chronic intake of diethyl-dithio-carbamate enhanced the concentrations of reduced glutathione in the forebrains from the rats of the different ages tested, the oxidized glutathione being unchanged. In 15-month-old rats submitted to chronic oxidative stress, ergot alkaloids (and particularly dihydroergocriptine) interfered with cerebral glutathione system, while papaverine was always ineffective. The comprehensive analysis of the data indicates that: (a) both the type of oxidative stress and the age of the animals modulate the cerebral responsiveness to the putative modifiers in the level of tissue free radicals; (b) aging magnifies the cerebral alterations induced by oxidative stress; the (c) cerebral glutathione system may be modified by metabolic rather than by circulatory interferences; (d) a balance between the various cerebral antioxidant defenses is present, the perturbation of an antioxidant system resulting in the compensatory modified activity of component(s) of another system.  相似文献   

9.
目的:明确心理应激对大鼠牙周炎组织局部病损以及抗氧化酶活性和丙二醛(MDA)含量变化的影响。方法:40只健康Sprague-Dawley大鼠随机分为对照组(C)、实验性牙周炎组(EP)、实验性牙周炎+心理应激组(EP+PS)以及实验性牙周炎+心理应激+药物组(EP+PS+DR),每组10只。分别采用丝线结扎法和慢性不可预知性应激法建立大鼠实验性牙周炎模型和心理应激模型。EP组动物仅用丝线结扎右上颌第二磨牙颈部,EP+PS组动物同时接受丝线结扎和心理应激刺激,EP+PS+DR组动物除上述处置外,按5 mg/kg/日剂量腹腔注射氟西汀,而C组大鼠无任何干预措施。4周后对所有动物进行糖水偏爱度测试、行为学观察和血清学检测,并计算牙槽骨丧失和附着丧失情况,同时测量牙龈组织中抗氧化酶活性以及MDA含量。结果:慢性不可预知性应激导致大鼠旷场实验中央区移动距离减少(P<0.05)、中央区停留时间增加(P<0.05)、糖水偏爱度降低(P<0.05)、血清皮质酮与促肾上腺皮质激素浓度升高(P<0.05);并且应激大鼠的牙槽骨丧失和附着丧失明显大于单纯牙周炎组(P<0.05);同时,心理应激状态下大鼠牙龈组织的氧化还原代谢异常,表现为超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)活性明显低于单纯牙周炎组(P<0.05),而MDA含量明显高于单纯牙周炎组(P<0.05)。氟西汀在拮抗心理应激的同时,可以明显改善动物牙周炎组织局部降低的抗氧化酶活性以及升高的脂质过氧化产物含量(P<0.05)。结论:心理应激可以导致牙周炎组织的氧化损伤加重,有效拮抗心理应激有助于减轻牙周炎性组织病损。  相似文献   

10.
We examined the effects of dietary vitamin E (VE) on oxidative damage to DNA and lipids in the liver a few days after total body irradiation (TBI). ODS rats, which lack vitamin C synthesis, were fed either a low VE diet (4.3 λmg λVE/kg) or a basal VE diet (75.6 λmg λVE/kg) for 5 weeks while vitamin C was supplied in the drinking water. The VE level in the liver of the low VE group was lower and the levels of lipid peroxides were higher compared to those of the basal VE group: the relative levels in the two groups were 1:30 for VE, 18:1 for 4-hydroxynonenal (HNE), and 10:1 for hexanal (HA). The level of 8-hydroxydeoxyguanosine (8OHdG), a marker of oxidative DNA damage, did not differ between the low VE and the basal VE groups. When the rats received TBI at the dose of 3 λGy and were killed on day 6, the levels of HNE, HA and 8OHdG increased by 2.2-, 2-, and 1.5-times, respectively, in the low VE group, but TBI did not cause such increases in the basal VE group. Changes in antioxidative enzymes (glutathione peroxidase, catalase, and Cu/Zn-SOD) in the liver could not explain the different responses of the two diet groups to TBI-induced oxidative damage. The concentrations of vitamin C and glutathione in the liver did not differ between the two groups. These results suggest that dietary VE can prevent the oxidative damage to DNA and lipids in the liver which appear a few days after TBI at dose of 3 λGy.  相似文献   

11.
Intake of green tea catechin (GTC) for 4 weeks was found to elevate vitamin E level in the mucosa of the rat large intestine. Iron-induced lipid peroxidation of the mucosal homogenate was suppressed by intake of GTC in rats fed monounsaturated fatty acid (MUFA), indicating that the protective effect of dietary GTC on mucosal oxidative stress is enhanced by combination with a MUFA-rich diet.  相似文献   

12.
Intake of green tea catechin (GTC) for 4 weeks was found to elevate vitamin E level in the mucosa of the rat large intestine. Iron-induced lipid peroxidation of the mucosal homogenate was suppressed by intake of GTC in rats fed monounsaturated fatty acid (MUFA), indicating that the protective effect of dietary GTC on mucosal oxidative stress is enhanced by combination with a MUFA-rich diet.  相似文献   

13.
Short-term feeding studies were carried out to investigate the effect of ingestion of salted dried fish on alterations in tissue lipid peroxidation and modulation of the activities of detoxification enzymes in liver in order to study the induction of oxidative stress. Rats were fed diets with either 5, 10 and 20% dried mackerel for 4 weeks and levels of antioxidants in liver were estimated. The results showed that the fish intake at 10 and 20% dietary level reduced glutathione with a reciprocal increase in thiobarbituric acid reactive substances and a concomitant decrease in antioxidant vitamins A and C contents in liver. A significant decline in the activities of hepatic glutathione peroxidase and glutathione reductase were also observed at these levels of fish consumption. Kidney gamma-glutamyl transpeptidase activity on the other hand was increased abnormally at 20% fish intake. The results suggested that the dried fish consumption at higher concentrations (at 10 and 20%) for a short period caused lowering of the activities of antioxidative enzymes thereby inducing oxidative stress in rat liver.  相似文献   

14.
Ameliorative effects of few naturally occurring antioxidants like ascorbic acid (vitamin C), alpha-tocopherol (vitamin E) either alone or in combination with meso-2,3-dimercaptosuccinic acid (DMSA) or monoisoamyl DMSA (MiADMSA), on parameters indicative of oxidative stress in the liver, kidney, brain and blood of lead-exposed rats were studied. Male Wistar rats were exposed to 0.1% lead acetate in drinking water for 3 months and treated thereafter with DMSA or its analogue MiADMSA (50 mg/kg, intraperitoneally), either individually or in combination with vitamin E (5 mg/kg, intramuscularly) or vitamin C (25 mg/kg, orally) once daily for 5 days. The effects of these treatments in influencing the lead-induced alterations in haem synthesis pathway, hepatic, renal and brain oxidative stress and lead concentration from the soft tissues were investigated. Exposure to lead produced a significant inhibition of delta-aminolevulinic acid dehydratase (ALAD) activity from 8.44+/-0.26 in control animals to 1.76+/-0.32 in lead control, reduction in glutathione (GSH) from 3.56+/-0.14 to 2.57+/-0.25 and an increase in zinc protoporphyrin level from 62.0+/-3.9 to 170+/-10.7 in blood, suggesting altered haem synthesis pathway. Both the thiol chelators and the two vitamins were able to increase blood ALAD activity towards normal, however, GSH level responded favorably only to the two thiol chelators. The most prominent effect on blood ALAD activity was, however, observed when MiADMSA was co-administered with vitamin C (7.51+/-0.17). Lead exposure produced a significant depletion of hepatic GSH from 4.59+/-0.78 in control animals to 2.27+/-0.47 in lead controls and catalase activity from 100+/-3.4 to 22.1+/-0.25, while oxidized glutathione (GSSG; 0.34+/-0.05 to 2.05+/-0.25), thiobarbituric acid reactive substance (TBARS; 1.70+/-0.45 to 5.22+/-0.50) and glutathione peroxidase (GPx) levels (3.41+/-0.09 to 6.17+/-0.65) increased significantly, pointing to hepatic oxidative stress. Altered, reduced and oxidized GSH levels showed significant recovery after MiADMSA and DMSA administration while, vitamins E and C were effective in reducing GSSG and TBARS levels and increasing catalase activity. Administration of MiADMSA alone and the combined administration of vitamin C along with DMSA and MiADMSA were most effective in increasing hepatic GSH levels to 4.88+/-0.14, 4.09+/-0.12 and 4.30+/-0.06, respectively. Hepatic catalase also reached near normal level in animals co-administered vitamin C with DMSA or MiADMSA (82.5+/-4.5 and 84.2+/-3.5, respectively). Combined treatments with vitamins and the thiol chelators were also able to effectively reduce lead-induced decrease in renal catalase activity and increase in TBARS and GPx level. Combination therapy, however, was unable to provide an effective reversal in the altered parameters indicative of oxidative stress in different brain regions, except in catalase activity. The result also suggests a beneficial role of vitamin E when administered along with the thiol chelators (particularly with MiADMSA) in reducing body lead burden. Blood lead concentration was reduced from 13.3+/-0.11 in lead control to 0.3+/-0.01 in MiADMSA plus vitamin E-treated rats. Liver and kidney lead concentration also showed a most prominent decrease in MiADMSA plus vitamin E co-administered rats (5.29+/-0.16 to 0.63+/-0.02 and 14.1+/-0.21 to 1.51+/-0.13 in liver and kidney, respectively). These results thus suggest that vitamin C administration during chelation with DMSA/MiADMSA was significantly beneficial in reducing oxidative stress however, it had little or no additive effect on the depletion of lead compared with the effect of chelators alone. Thus, the co-administration of vitamin E during chelation treatment with DMSA or MiADMSA could be recommended for achieving optimum effects of chelation therapy.  相似文献   

15.
Free radicals mediated oxidative stress has been implicated in the pathogenesis of smoking-related diseases and antioxidant nutrients are reported to prevent the oxidative damage induced by smoking. Therefore, the present study was conducted to evaluate the antioxidant role of bacoside A (triterpenoid saponin isolated from Bacopa monniera) against chronic cigarette smoking induced oxidative damage in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with bacoside A (10 mg/kg b.w./day, p.o.). Antioxidant status of the brain was assessed from the levels of reduced glutathione, vitamin C, vitamin E, and vitamin A and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The levels of copper, iron, zinc and selenium in brain and serum ceruloplasmin activity were also measured. Oxidative stress was evident from the diminished levels of both enzymatic and non-enzymatic antioxidants. Alterations in the levels of trace elements with accumulation of copper and iron, and depletion of zinc and selenium were also observed. Bacoside A administration improved the antioxidant status and maintained the levels of trace elements. These results suggest that chronic cigarette smoke exposure enhances oxidative stress, thereby disturbing the tissue defense system and bacoside A protects the brain from the oxidative damage through its antioxidant potential.  相似文献   

16.
We examined the effects of dietary vitamin E (VE) on oxidative damage to DNA and lipids in the liver a few days after total body irradiation (TBI). ODS rats, which lack vitamin C synthesis, were fed either a low VE diet (4.3 &#117 mg &#117 VE/kg) or a basal VE diet (75.6 &#117 mg &#117 VE/kg) for 5 weeks while vitamin C was supplied in the drinking water. The VE level in the liver of the low VE group was lower and the levels of lipid peroxides were higher compared to those of the basal VE group: the relative levels in the two groups were 1:30 for VE, 18:1 for 4-hydroxynonenal (HNE), and 10:1 for hexanal (HA). The level of 8-hydroxydeoxyguanosine (8OHdG), a marker of oxidative DNA damage, did not differ between the low VE and the basal VE groups. When the rats received TBI at the dose of 3 &#117 Gy and were killed on day 6, the levels of HNE, HA and 8OHdG increased by 2.2-, 2-, and 1.5-times, respectively, in the low VE group, but TBI did not cause such increases in the basal VE group. Changes in antioxidative enzymes (glutathione peroxidase, catalase, and Cu/Zn-SOD) in the liver could not explain the different responses of the two diet groups to TBI-induced oxidative damage. The concentrations of vitamin C and glutathione in the liver did not differ between the two groups. These results suggest that dietary VE can prevent the oxidative damage to DNA and lipids in the liver which appear a few days after TBI at dose of 3 &#117 Gy.  相似文献   

17.
Hyperbaric oxygen therapy is used to treat various clinical conditions, but it also causes oxidative damage. The objectives of this study are to determine if increased vitamin C intake can prevent hyperbaric oxygen-induced damage and to determine interactions among vitamin C, glutathione and vitamin E in response to oxidative stress. The growth rates of unexposed guinea pigs fed 1.25 mg vitamin C/day were indistinguishable from that of guinea pigs fed 50 mg vitamin C/day. In contrast, hyperbaric oxygen exposure resulted in growth retardation in guinea pigs fed 1.25 mg vitamin C/day, but it had little effect on the growth rates of guinea pigs fed 50 mg vitamin C/day. Increased vitamin C intake also prevented hyperbaric oxygen-induced lipid peroxidation in the liver. In guinea pigs not exposed to hyperbaric oxygen, levels of vitamin C in tissues were closely related to vitamin C intake, but tissue levels of glutathione and vitamin E were not related to vitamin C intake. However, interactions between vitamin C and glutathione were observed upon chronic hyperbaric oxygen exposure. Chronic hyperbaric oxygen exposure resulted in >2-fold increases in the levels of glutathione in liver and lung of guinea pigs fed 1.25 mg vitamin C/day. In comparison, the oxidation-induced increases in glutathione were significantly attenuated in guinea pigs fed 50 mg vitamin C/day. These data show that increased intake of vitamin C can prevent or alleviate the hyperbaric oxygen-induced damage. The interactions between vitamin C and glutathione upon hyperbaric oxygen exposure indicate that there is a homeostatic regulation of antioxidant capacity in guinea pig tissues.  相似文献   

18.
Alcoholic liver disease (ALD) develops as a consequence of priming and sensitizing mechanisms rendered by cross-interactions of primary mechanistic factors and secondary risk factors. Chronic alcohol abuse and its progression to ALD are associated with abnormal metabolism and low tissue or plasma levels, or both, of many micronutrients. Glutathione depletion is considered the most important sensitizing mechanism. In the present study efficacy of lecithin with vitamin-B complex to treat ethanol induced oxidative stress was compared with the effect of lecithin alone, tocopheryl acetate (vitamin E), as well as capacity of hepatic regeneration during abstention. Ethanol (1.6g / kg body weight/ day for 4 weeks) affects body weight in 16-18 week old male albino rats of Wistar strain weighing 200-220 g. Thiobarbituric acid reactive substance level, nitrite content, protein carbonyl group level, redox ratio (oxidized to reduced glutathione ratio), superoxide dismutase activity, and glutathione s-transferase activity significantly increased on ethanol exposure. Whereas reduced glutathione content, and activities of catalase, glutathione reductase and glutathione peroxidase significantly reduced due to ethanol exposure. These changes were reversed by different treatment. The results suggest that tocopheryl acetate (vitamin E) could partially reverse these changes and act as a potential therapeutic agent. However, lecithin with vitamin-B complex treatment is a promising therapeutic approach. Furthermore, preventive measures were more effective than curative treatment. Prevention of oxidative and nitrosative stress along with correction of nutritional deficiency is one of the proposed mechanisms for the therapeutic approach.  相似文献   

19.
Cellular glutathione levels may exceed vitamin C levels by 10-fold, generating the question about the real antioxidant role that low intracellular concentrations of vitamin C can play in the presence of a vast molar excess of glutathione. We characterized the metabolism of vitamin C and its relationship with glutathione in primary cultures of human endothelial cells oxidatively challenged by treatment with hydrogen peroxide or with activated cells undergoing the respiratory burst, and analyzed the manner in which vitamin C interacts with glutathione to increase the antioxidant capacity of cells. Our data indicate that: (i) endothelial cells express transporters for reduced and oxidized vitamin C and accumulate ascorbic acid with participation of glutathione-dependent dehydroascorbic acid reductases, (ii) although increased intracellular levels of vitamin C or glutathione caused augmented resistance to oxidative stress, 10-times more glutathione than vitamin C was required, (iii) full antioxidant protection required the simultaneous presence of intracellular and extracellular vitamin C at concentrations normally found in vivo, and (iv) intracellular vitamin C cooperated in enhancing glutathione recovery after oxidative challenge thus providing cells with enhanced survival potential, while extracellular vitamin C was recycled through a mechanism involving the simultaneous neutralization of oxidant species. Therefore, in endothelial cells under oxidative challenge, vitamin C functions as an essential cellular antioxidant even in the presence of a vast molar excess of glutathione.  相似文献   

20.
Melatonin is an important antioxidant, and through its anti-inflammatory effects it can control immune responses, oxidative stress, and defense cell infiltration. Periodontitis is a disease of the oral cavity and the generation of free radicals is an important consideration in this disease. Therefore, we examined the immune-modulatory and antioxidant roles of melatonin in the treatment of periodontitis. In all, 30 male Wistar rats were randomly divided into three groups: the control group, the periodontitis-induced (PED) group, and the periodontitis+melatonin treatment (MEL+PED) group. The control group received no treatment, whereas periodontitis was induced in both the PED and the MEL+PED groups, with the MEL+PED group being treated with systemic melatonin. For the periodontitis-induced groups, the rats' mandibular first molar teeth were ligatured (3-0 cotton) in a submarginal position for 4 weeks, and then the ligature was removed. After removal of the ligature, melatonin was administered only to the MEL+PED group (an ip dose of 10 mg/kg body wt for 15 days at 11:00 PM each day). In the histological examination, the MEL+PED group, which received the melatonin, showed reduced inflammatory cytokines (IL-1β, from 97.47 to 84.24 pg/ml; TNF-α, from 0.22530 to 0.22519 pg/ml), regulated oxidative stress parameters (MDA, from 41,458 to 30,708 nmol/g; GSH, from 18,166 to 25,858 nmol/mg), and less periodontal tissue destruction (CEJ-PL, lingual, from 244.54 to 140.57 μm; buccal, from 235.6 to 158.93 μm; and CEJ-BC, lingual, from 383.65 to 287.76 μm; buccal, from 391.92 to 296.12 μm). From these findings we conclude that, even when periodontitis was induced, melatonin reduced the oxidative damage in the rats' periodontal tissue by inhibiting the inflammatory effects and by restoring the antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号