首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 BM-3 from Bacillus megaterium catalyzes the subterminal hydroxylation of medium- and long-chain fatty acids at the positions omega-1, omega-2, and omega-3. A rapid and continuous spectrophotometric activity assay for cytochrome P450 BM-3 based on the conversion of p-nitrophenoxycarboxylic acids (pNCA) to omega-oxycarboxylic acids and the chromophore p-nitrophenolate was developed. In contrast to the commonly used activity assays for this enzyme, relying on the consumption of oxygen or NADPH or the use of 14C-labeled carboxylic acids, the pNCA assay can even be used with crude extracts of the recombinant enzyme from lysed Escherichia coli cells. The kinetics of p-nitrophenolate formation are directly measured at a wavelength of 410 nm using a spectrophotometer or microtiter plate reader. Sensitivity of the assay is greatly enhanced if p-nitrophenoxydodecanoic or p-nitrophenoxypentadecanoic acid are used with the F87A mutant instead of the wild-type P450 BM-3 enzyme.  相似文献   

2.
Cytochrome P450 BM-3 (CYP102) catalyzes the subterminal hydroxylation of fatty acids with a chain length of 12–22 carbons. The paper focuses on the regioselectivity and substrate specificity of the purified wild-type enzyme and five mutated variants towards caprylic, capric, and lauric acid. The enzymes were obtained by random mutagenic fine-tuning of the mutant F87A(LARV). F87A(LARV) was selected as the best enzyme variant in a previous study in which the single mutant F87A was subjected to rational evolution to achieve hydroxylation activity for short chain length substrates using a p-nitrophenolate-based spectrophotometric assay.

The best mutants, F87V(LAR) and F87V(LARV), show a higher catalytic activity towards ω-(p-nitrophenoxy)decanoic acid (10-p-NCA) than F87A(LARV). In addition, they proved capable of hydroxylating ω-(p-nitrophenoxy)octanoic acid (8-p-NCA) which the wild-type enzyme is unable to do. Both variants catalyzed hydroxylation of capric acid, which is not a substrate for the wild-type, with a conversion rate of up to 57%. The chain length specificity of the mutants in fatty acid hydroxylation processes shows a good correlation with their activity towards p-NCA pseudosubstrates. The p-NCA assay therefore, allows high-throughput screening of large mutant libraries for the identification of enzyme variants with the desired catalytic activity towards fatty acids as the natural substrates.  相似文献   


3.
Hydroxylations of octane and lauric acid by Cytochrome P450-BM3 (CYP102A1) wild-type and three active site mutants--F87A, L188Q/A74G, and F87V/L188Q/A74G--were rationalized using a combination of substrate orientation from docking, substrate binding statistics from molecular dynamics simulations, and barrier energies for hydrogen atom abstraction from quantum mechanical calculations. Wild-type BM3 typically hydroxylates medium- to long-chain fatty acids on subterminal (omega-1, omega-2, omega-3) but not the terminal (omega) positions. The known carboxylic anchoring site Y51/R47 for lauric acid, and hydrophobic interactions and steric exclusion, mainly by F87, for octane as well as lauric acid, play a role in the binding modes of the substrates. Electrostatic interactions between the protein and the substrate strongly modulate the substrate's regiodependent activation barriers. A combination of the binding statistics and the activation barriers of hydrogen-atom abstraction in the substrates is proposed to determine the product formation. Trends observed in experimental product formation for octane and lauric acid by wild-type BM3 and the three active site mutants were qualitatively explained. It is concluded that the combination of substrate binding statistics and hydrogen-atom abstraction barrier energies is a valuable tool to rationalize substrate binding and product formation and constitutes an important step toward prediction of product ratios.  相似文献   

4.
The soluble P450 isolated from Bacillus megaterium (the product of the CYP 102 gene) (P450BM-3) is a catalytically self-sufficient fatty acid hydroxylase which converts lauric, myristic, and palmitic acids to omega-1, omega-2, and omega-3 hydroxy analogs. The percentage distribution of the regioisomers depends on the substrate chain length. Lauric and myristic acids were preferentially metabolized to their omega-1 hydroxy counterparts while no hydroxylation occurred when capric acid was used as the substrate. Palmitic acid, when present at concentrations greater than the concentration of oxygen in the reaction medium (greater than 250 microM), was hydroxylated to its omega-1, omega-2, and omega-3 hydroxy analogs, with the percentage distribution of the regioisomers being 21:44:35, respectively. No omega hydroxylation of any of the fatty acids was detected. When the concentration of palmitic acid was less than the concentration of oxygen in the reaction mixture, it was noted that a number of additional products were formed. Under these conditions, unlike lauric and myristic acids, it was observed that palmitic acid was first converted to its monohydroxy isomers which were subsequently metabolized to a mixture of 14-ketohexadecanoic, 15-ketohexadecanoic, 13-hydroxy-14-ketohexadecanoic, 14-hydroxy-15-ketohexadecanoic, and 13,14-dihydroxyhexadecanoic acids with a relative distribution of 8:2:40:30:20, respectively. Thus, P450BM-3 is able not only to monohydroxylate a variety of fatty acids but also to further metabolize some of these primary metabolites to secondary and tertiary products. The present paper characterizes the products formed during the sequential hydroxylation of palmitic acid and proposes reaction pathways to explain these results.  相似文献   

5.
Replacement of phenylalanine 87 with alanine or glycine (mutant F87A or F87G) greatly increased the H2O2-supported substrate hydroxylation activity of cytochrome P450BM-3, whose original H2O2-supported activity is hardly detectable. On the other hand, replacement of phenylalanine 87 with valine (mutant F87V) did not. In the oxidation of p-nitrophenoxydodecanoic acid (12-pNCA), the turnover numbers of the mutant F87A in the presence of NADPH and O2, or H2O2 were 493 and 162 nmol/min/nmol, respectively. The H2O2-supported F87A hydroxylation activity was further confirmed with free fatty acids as substrates. Moreover, the stability of F87A in H2O2 solutions also largely increased. The order of the stability of the wild type (WT), F87A, and their substrate (12-pNCA)-binding complexes in H2O2 solutions listed from high to low was F87A, WT, F87A substrate-binding complex, and WT substrate-binding complex. We propose that the free space size in the vicinity of the heme iron significantly influences P450BM-3 H2O2-supported activity and H2O2 inactivation.  相似文献   

6.
Cytochrome P450 BM-3, a self-sufficient P450 enzyme from Bacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.  相似文献   

7.
Cytochrome P450 BM-3, a self-sufficient P450 enzyme from Bacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.  相似文献   

8.
Cytochromes P450IVA1 and IVA3 display 72% amino acid sequence similarity and are expressed in livers of rats treated with the hypolipidemic drug clofibrate. The catalytic activities of IVA1 and IVA3 were examined by cDNA-directed expression using vaccinia virus. cDNA-expressed IVA1 and IVA3 had relative Mrs of 51,500 and 52,000, respectively, on SDS-polyacrylamide gels. Both enzymes displayed reduced, CO-bound absorption spectra with lambda max of 452.5 nm. IVA1 and IVA3 hydroxylated lauric acid at the omega and omega-1 positions with equivalent omega/omega-1 ratios of about 12.5. IVA1 had a substrate turnover of 21 min-1 which was about fourfold higher than that of IVA3. The omega and omega-1 hydroxylation of palmitic acid was also catalyzed by these P450s with combined turnover numbers for both metabolites of 45 min-1 or 18 min-1 for IVA1 and IVA3, respectively. The omega/omega-1 oxidation ratio of IVA1 for palmitate was 1.25 which was almost fourfold higher than that obtained for IVA3. These enzymes also catalyzed omega oxidation of the physiologically important eicosanoids prostaglandins E1 and F2 alpha with turnover numbers of about one-tenth those calculated for fatty acid oxidations. No omega-1 hydroxy metabolites were produced. These studies indicate that the P450 enzymes IVA1 and IVA3 are able to catalyze the oxidations of both fatty acids and prostaglandins.  相似文献   

9.
The determinants of the regio- and stereoselective oxidation of fatty acids by cytochrome P450 BM-3 were examined by mutagenesis of residues postulated to anchor the fatty acid or to determine its active site substrate-accessible volume. R47, Y51, and F87 were targeted separately and in combination in order to assess their contributions to arachidonic, palmitoleic, and lauric acid binding affinities, catalytic rates, and regio- and stereoselective oxidation. For all three fatty acids, mutation of the anchoring residues decreased substrate binding affinity and catalytic rates and, for lauric acid, caused a significant increase in the enzyme's NADPH oxidase activity. These changes in catalytic efficiency were accompanied by decreases in the regioselectivity of oxygen insertion, suggesting an increased freedom of substrate movement within the active site of the mutant proteins. The formation of significant amounts of 19-hydroxy AA by the Y51A mutant and of 11,12-EET by the R47A/Y51A/F87V triple mutant, suggest that wild-type BM-3 shields these carbon atoms from the heme bound reactive oxygen by restricting the freedom of AA displacement along the substrate channel, and active site accessibility. These results indicate that binding affinity and catalytic turnover are fatty acid carbon-chain length dependent, and that the catalytic efficiency and the regioselectivity of fatty acid metabolism by BM-3 are determined by active site binding coordinates that control acceptor carbon orientation and proximity to the heme iron.  相似文献   

10.
We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.  相似文献   

11.
Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant   总被引:3,自引:0,他引:3  
The single mutant F87A of cytochrome P-450 BM-3 from Bacillus megaterium was engineered by rational evolution to achieve improved hydroxylation activity for medium chain length substrates (C8-C10). Rational evolution combines rational design and directed evolution to overcome the drawbacks of these methods when applied individually. Based on the X-ray structure of the enzyme, eight mutation sites (P25, V26, R47, Y51, S72, A74, L188, and M354) were identified by modeling. Sublibraries created by site-specific randomization mutagenesis of each single site were screened using a spectroscopic assay based on omega-p-nitrophenoxycarboxylic acids (pNCA). The mutants showing activity for shorter chain length substrates were combined, and these combi-libraries were screened again for mutants with even better catalytic properties. Using this approach, a P-450 BM-3 variant with five mutations (V26T, R47F, A74G, L188K, and F87A) that efficiently hydrolyzes 8-pNCA was obtained. The catalytic efficiency of this mutant towards omega-p-nitrophenoxydecanoic acid (10-pNCA) and omega-p-nitrophenoxydodecanoic acid (12-pNCA) is comparable to that of the wild-type P-450 BM-3.  相似文献   

12.
Cytochrome P450 BM-3 from Bacillus megaterium is a fatty acid hydroxylase exhibiting selectivity for long-chain substrates (12–20 carbons). Replacement of Phe87 in P450 BM-3 by Val (F87V) greatly increased its activity towards a variety of aromatic and phenolic compounds. The apparent initial reaction rates of F87V as to benzothiophene, indan, 2,6-dichlorophenol, and 2-(benzyloxy)phenol were 227, 204, 129, and 385 nmol min–1 nmol–1 P450, which are 220-, 66-, 99-, and 963-fold those of the wild type, respectively. These results indicate that Phe87 plays a critical role in the control of the substrate specificity of P450 BM-3. Furthermore, F87V catalyzed regioselective hydroxylation at the para position of various phenolic compounds. In particular, F87V showed high activity as to the hydroxylation of 2-(benzyloxy)phenol to 2-(benzyloxy)hydroquinone. With F87V as the catalyst, 0.71 mg ml–1 2-(benzyloxy)hydroquinone was produced from 1.0 mg ml–1 2-(benzyloxy)phenol in 4 h, with a molar yield of 66%.  相似文献   

13.
CYP102A1 is a highly active water-soluble bacterial monooxygenase that contains both substrate-binding heme and diflavin reductase subunits, all in a single polypeptide that has been called a "self-sufficient enzyme." Several years ago we developed a procedure called "scanning chimeragenesis," where we focused on residues 73-82 of CYP102A1, which contact approximately 40% of the substrates palmitoleic acid and N-palmitoylglycine [Murataliev et al. (2004) Biochemistry 43:1771-1780]. These residues were replaced with the homologous residues of CYP4C7. In the current work, that study has been expanded to include residue 87. Phenylalanine 87 of wild-type CYP102A1 was replaced with the homologous residue of CYP4C7, leucine, as well as with alanine. The full-sized chimeric proteins C(73-78, F87L), C(73-78, F87A), C(75-80, F87L), C(75-80, F87A), C(78-82, F87L) and C(78-82, F87A) have been purified and characterized. Wild-type CYP102A1 is most active toward fatty acids (both lauric and palmitic acids produce omega-1, omega-2, and omega-3 hydroxylated fatty acids), but it also catalyzes the oxidation of farnesol to three products (2, 3- and 10,11-epoxyfarnesols and 9-hydroxyfarnesol). All of the F87-mutant chimeric proteins show dramatic decreases in activities with the natural CYP102A1 substrates. In contrast, C(78-82, F87A) and C(78-82, F87L) have markedly increased activities with farnesol, with the latter showing a 5.7-fold increase in catalytic activity as compared to wild-type CYP102A1. C(78-82, F87L) produces 10,11-epoxyfarnesol as the single primary metabolite. The results show that chimeragenesis involving only the second half of SRS-1 plus F87 is sufficient to change the substrate selectivity of CYP102A1 from fatty acids to farnesol and to produce a single primary product.  相似文献   

14.
We resolved four cytochrome P-450s, designated as P450 K-2, K-3, K-4, and K-5, from the renal microsomes of untreated male rats by high-performance liquid chromatography (HPLC) and investigated the lauric acid and arachidonic acid hydroxylation activities of these fractions. P450 K-4 and K-5 had high omega- and (omega-1)-hydroxylation activities toward lauric acid. The ratio of the omega-/(omega-1)-hydroxylation activity of P450 K-4 and K-5 was 3 and 6, respectively. Also, P450 K-4 and K-5 effectively catalyzed the omega- and (omega-1)-hydroxylation of arachidonic acid. P450 K-3 was not efficient in the hydroxylation of either lauric acid or arachidonic acid. P450 K-2 had low omega- and (omega-1)-hydroxylation activities toward arachidonic acid, and efficiently catalyzed the hydroxylation of lauric acid at the (omega-1)-position only, not at the omega-position.  相似文献   

15.
Cytochrome P-450BM-3 is a catalytically self-sufficient fatty acid omega-hydroxylase with two domains. Functional and primary structure analyses of the hemo- and flavoprotein domains of cytochrome P-450BM-3 and the corresponding microsomal cytochrome P-450 system have shown that these proteins are highly homologous. Prior attempts to reconstitute the fatty acid hydroxylation function of cytochrome P-450BM-3, utilizing the two domains, obtained either by trypsinolysis or by recombinant methods, were unsuccessful. In this paper, we describe the reconstitution of the fatty acid hydroxylation activity of cytochrome P-450BM-3 utilizing the recombinantly produced flavoprotein domain (Oster, T., Boddupalli, S. S., and Peterson, J. A. (1991) J. Biol. Chem. 266, 22718-22725) and its hemoprotein counterpart. The rate of fatty acid-dependent oxygen consumption was shown to be linear when increasing concentrations of the hemoprotein domain are added to a fixed concentration of the flavoprotein domain and vice versa. The combination of the hemo- and flavoprotein domains in a ratio of 20:1 respectively, in the reaction mixture, results in the transfer of 80% of the reducing equivalents from NADPH for the hydroxylation of palmitate at 25 degrees C. The ratio of the regioisomeric products obtained for lauric, myristic, and palmitic acids was similar to that obtained with the holoenzyme form of cytochrome P-450BM-3. The reconstitution of the fatty acid omega-hydroxylase activity, using the soluble domains of cytochrome P-450BM-3, without added factors such as lipids, may be useful for structure/function comparisons to their eukaryotic counterparts.  相似文献   

16.
The use of three mechanism-based probes to investigate the topology and function of fatty acid hydroxylases is discussed. 1) The observation of protein rather than heme alkylation in the reaction of cytochrome P4504A1 with 10-undecynoic acid supports the argument that the enzyme circumvents the inherent preference for omega-1 hydroxylation by restricting access to the ferryl oxygen. 2) The regiochemistry of the ferricyanide-mediated iron-to-nitrogen shift of the cytochrome P450102 (P450BM-3) phenyl-iron complex indicates that the active site of this bacterial fatty acid hydroxylase is open primarily above pyrrole ring A of the prosthetic heme group, 3) Inhibition of clofibrate-mediated peroxisome proliferation in cultured rat hepatocytes by inactivation of cytochrome P4504A1 indicates that omega-hydroxylation of fatty acids provides a signal for peroxisome proliferation.  相似文献   

17.
The cell-free extract of a cytochrome P-450-producing fungus, Fusarium oxysporum, was found to catalyze the hydroxylation of fatty acids. Three product isomers were formed from a single fatty acid. The products from lauric acid were identified by mass-spectrometry as 9-, 10-, and 11-hydroxydodecanoic acids, and those from palmitic acid as 13-, 14-, and 15-hydroxyhexadecanoic acids. The ratio of the isomers formed was 50 : 36 : 14 in the case of laurate hydroxylation, and 37 : 47 : 16 in the case of palmitate. The reaction was dependent on both NADPH (or NADH) and molecular oxygen,and was strongly inhibited by carbon monoxide, menadione, or the antibody to purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450. Further, lauric acid induced a type I spectral change in purified Fusarium P-450 with an apparent Kd of 0.3 mM. The hydroxylase activity together with cytochrome P-450 could be detected in both the soluble and microsome fractions, and the activity was almost proportional to the amount of cytochrome P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 reducible with NADPH. It can be concluded from these results that Fusarium P-450 is involved in the (omega-1)-, (omega-2)-, and (omega-3)-hydroxylation of fatty acids catalyzed by the cell-free extract of the fungus.  相似文献   

18.
The microsomes from rabbit intestinal mucosa which had been washed quickly and thoroughly with phenylmethylsulfonyl fluoride were found to catalyze the hydroxylation of fatty acids in the presence of NADPH and molecular oxygen. Myristic and palmitic acids were converted to the corresponding omega-and (omega-1)-hydroxy fatty acids, whereas lauric acid was converted only to 12-hydroxylauric acid, and capric acid, to 9-and 10-hydroxycapric acids together with an unknown polar acid.Among these fatty acids, both myristic and lauric acids appeared to be the most efficient substrates. The inhibition of the hydroxylation by SKF 525-A and carbon monoxide suggested that the activity depended upon cytochrome P-450. The specific activity of the fatty acid hydroxylation was almost constant along the small intestine, while the aminopyrine N-demethylation activity and the cytochrome P-450 content were highest at the proximal end of the intestine and progressively declined toward the caudal end. The cytochrome P-450 was solubilized from the intestinal microsomes and purified by 6-amino-n-hexyl Sepharose 4B chromatography. The partially purified cytochrome P-450 was active in fatty acid hydroxylation in combination with intestinal NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

19.
Wild-type cytochrome P450 monooxygenase from Bacillus megaterium (P450 BM-3) has a low hydroxylation activity for β-ionone (<1 min−1). Substitution of phenylalanine by valine at position 87 led to a more than 100-fold increase in β-ionone hydroxylation activity (115 min−1). Enzyme activity could be further increased by both site-directed and random mutagenesis. The mutant R47L Y51F F87V, designed by site-directed mutagenesis, and the mutant A74E F87V P386S, obtained after two rounds of error-prone polymerase chain reaction, exhibited an increase in activity of up to 300-fold compared to the wild-type enzyme. The triple mutant R47 LY51F F87V exhibited moderate enantioselectivity, forming (R)-4-hydroxy-β-ionone with an optical purity of 39%. All mutants regioselectively converted β-ionone into 4-hydroxy-β-ionone. The regioselectivity is determined amongst others by the absolute configuration of the substrate.  相似文献   

20.
Powerful directed evolution methods have been developed for tailoring proteins to our needs in industrial applications. Here, the authors report a medium-throughput assay system designed for screening mutant libraries of oxygenases capable of inserting a hydroxyl group into a C-H bond of aromatic or O-heterocyclic compounds and for exploring the substrate profile of oxygenases. The assay system is based on 4-aminoantipyrine (4-AAP), a colorimetric phenol detection reagent. By using 2 detection wavelengths (509 nm and 600 nm), the authors achieved a linear response from 50 to 800 microM phenol and standard deviations below 11% in 96-well plate assays. The monooxygenase P450 BM-3 and its F87A mutant were used as a model system for medium-throughput assay development, identification of novel substrates (e.g., phenoxytoluene, phenylallyether, and coumarone), and discovery of P450 BM-3 F87A mutants with 8-fold improvement in 3-phenoxytoluene hydroxylation activity. This activity increase was achieved by screening a saturation mutagenesis library of amino acid position Y51 using the 4-AAP protocol in the 96-well format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号