首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stria vascularis of the mammalian cochlea is composed primarily of three types of cells. Marginal cells line the lumen of the cochlear duct and are of epithelial origin. Basal cells also form a continuous layer and they may be mesodermal or derived from the neural crest. Intermediate cells are melanocyte-like cells, presumably derived from the neural crest, and are scattered between the marginal and basal cell layers. The marginal cells form extensive interdigitations with the basal and intermediate cells in the normal adult stria. The stria also contains a rich supply of blood vessels. We investigated the role of melanocytes in the stria vascularis by studying its development in a mouse mutant, viable dominant spotting, which is known to have a primary neural crest defect leading to an absence of recognisable melanocytes in the skin. Melanocytes were not found in the stria of most of the mutants examined, and from about 6 days of age onwards a reduced amount of interdigitation amongst the cells of the stria was observed. These ultrastructural anomalies were associated with strial dysfunction. In the normal adult mammal, the stria produces an endocochlear potential (EP), a resting dc potential in the endolymph in the cochlear duct, which in mice is normally about +100 mV. In our control mice, EP rose to adult levels between 6 and 16 days after birth. In most of the mutants we studied, EP was close to zero at all ages from 6 to 20 days. Melanocyte-like cells appear to be vital for normal stria vascularis development and function. They may be necessary to facilitate the normal process of interdigitation between marginal and basal cell processes at a particular stage during development, and the lack of adequate interdigitation in the mutants may be the cause of their strial dysfunction. Alternatively, melanocytes may have some direct, essential role in the production of an EP by the stria. Melanocytes may be important both for normal strial development and for the production of the EP. We believe this is the clearest demonstration yet of a role for migratory melanocytes other than their role in pigmentation.  相似文献   

2.
3.
4.
The majority of melanocytes originate from the neural crest cells (NCC) that migrate, spread on the whole embryo’s body to form elements of the nervous system and skeleton, endocrinal glands, muscles and melanocytes. Human melanocytes differentiate mainly from the cranial and trunk NCC. Although melanocyte development has traditionally been associated with the dorsally migrating trunk NCC, there is evidence that a part of melanocytes arise from cells migrating ventrally. The ventral NCC differentiate into neurons and glia of the ganglia or Schwann cells. It has been suggested that the precursors for Schwann cells differentiate into melanocytes. As melanoblasts travel through the dermis, they multiply, follow the process of differentiation and invade the forming human fetal epidermis up to third month. After birth, melanocytes lose the ability to proliferate, except the hair melanocytes that renew during the hair cycle. The localization of neural crest-derived melanocytes in non-cutaneous places e.g. eye (the choroid and stroma of the iris and the ciliary body), ear (cells of the vestibular organ, cochlear stria vascularis), meninges of the brain, heart seems to indicate that repertoire of melanocyte functions is much wider than we expected e.g. the protection of tissues from potentially harmful factors (e.g. free radicals, binding toxins), storage ions, and anti-inflammatory action.  相似文献   

5.
Sensorineural hearing loss (SNHL) is one of the most common congenital disorders in humans, afflicting one in every thousand newborns. The majority is of heritable origin and can be divided in syndromic and nonsyndromic forms. Knowledge of the expression profile of affected genes in the human fetal cochlea is limited, and as many of the gene mutations causing SNHL likely affect the stria vascularis or cochlear potassium homeostasis (both essential to hearing), a better insight into the embryological development of this organ is needed to understand SNHL etiologies. We present an investigation on the development of the stria vascularis in the human fetal cochlea between 9 and 18 weeks of gestation (W9–W18) and show the cochlear expression dynamics of key potassium‐regulating proteins. At W12, MITF+/SOX10+/KIT+ neural‐crest‐derived melanocytes migrated into the cochlea and penetrated the basement membrane of the lateral wall epithelium, developing into the intermediate cells of the stria vascularis. These melanocytes tightly integrated with Na+/K+‐ATPase‐positive marginal cells, which started to express KCNQ1 in their apical membrane at W16. At W18, KCNJ10 and gap junction proteins GJB2/CX26 and GJB6/CX30 were expressed in the cells in the outer sulcus, but not in the spiral ligament. Finally, we investigated GJA1/CX43 and GJE1/CX23 expression, and suggest that GJE1 presents a potential new SNHL associated locus. Our study helps to better understand human cochlear development, provides more insight into multiple forms of hereditary SNHL, and suggests that human hearing does not commence before the third trimester of pregnancy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1219–1240, 2015  相似文献   

6.
7.
目的: 原代培养豚鼠耳蜗血管纹毛细血管内皮细胞(ECs),探讨跨膜蛋白16A(TMEM16A)在耳蜗血管纹毛细血管ECs衰老过程中的变化及对耳蜗血管纹毛细血管ECs凋亡及衰老的影响。方法: 原代培养耳蜗血管纹毛细血管ECs,细胞传代构建衰老模型并根据CCK-8及β-半乳糖苷酶(SA-β-gal)染色评估细胞衰老程度,衰老细胞被随机分为衰老组(P12)、溶剂组(P12+DMSO)、T16Ainh-A01组(P12+T16Ainh-A01),免疫荧光及Western blot检测TMEM16A在ECs上的表达及分布,流式细胞术检测各组细胞凋亡率,Western blot检测各组Bax、Bcl-2、cleaved casepase-3蛋白表达水平。结果: 原代培养的耳蜗血管纹毛细血管ECs阳性率在95%以上,并确定第12代耳蜗血管纹毛细血管ECs为衰老组,与年轻组ECs相比,衰老组ECs上TMEM16A荧光及蛋白表达显著增强(P<0.05),细胞凋亡率升高,衰老组给予T16Ainh-A01干预24 h后,Bax、cleaved casepase-3的蛋白表达下调(P<0.01),Bcl-2的蛋白表达上调(P<0.05),凋亡率下降且SA-β-gal阳性细胞率明显下降(P<0.01)。结论: 衰老耳蜗血管纹毛细血管ECs凋亡增多且TMEM16A表达增加,TMEM16A特异性阻断剂T16Ainh-A01可以降低耳蜗血管纹毛细血管ECs的凋亡和衰老程度,提示TMEM16A可能参与耳蜗血管纹毛细血管ECs的凋亡和衰老过程。  相似文献   

8.
Intermediate cells in the stria vascularis of the mammalian cochlea are melanocytes, which contain melanin pigments and are capable of synthesizing melanin. These melanocytes are required for normal development of the cochlea, as evidenced by studies of mutant mice with congenital melanocyte anomalies. Melanocytes are also needed for developed cochleae to function normally, as evidenced by studies of mutant mice with late-onset melanocyte anomaly and humans with acquired melanocyte anomaly. Melanin, per se, does not seem to be essential for normal hearing function, but it may protect against traumata to the cochlea, e.g., noise and ototoxic aminoglycosides. Recent electrophysiological studies have revealed that strial intermediate cells are provided with specific ionic channels, such as inwardly rectifying K+ channels (Kir4.1) and voltage-dependent outwardly rectifying K+ channels. These channels may play central roles in strial function and thus in normal hearing.  相似文献   

9.
Auditory function and cochlear morphology have previously been described in the postnatal German waltzing guinea pig, a strain with recessive deafness. In the present study, cochlear histopathology was further investigated in the inner ear of the developing German waltzing guinea pig (gw/gw). The lumen of the cochlear duct diminished progressively from embryonic day (E) 35 to E45 and was absent at E50 because of the complete collapse of Reissner's membrane onto the hearing organ. The embryonic stria vascularis, consisting of a simple epithelium, failed to transform into the complex trilaminar tissue seen in normal animals and displayed signs of degeneration. Subsequent degeneration of the sensory epithelium was observed from E50 and onwards. Defective and insufficient numbers of melanocytes were observed in the developing gw/gw stria vascularis. A gene involved in cochlear melanocyte development, Pax3, was markedly reduced in lateral wall tissue of the cochlea of both E40 and adult gw/gw individuals, whereas its expression was normal in the skin and diaphragm muscle of adult gw/gw animals. The Pax3 gene may thus be involved in the pathological process but is unlikely to be the primary mutated gene in the German waltzing guinea pig. TUNEL assay showed no signs of apoptotic cell death in the developing stria vascularis of this type of guinea pig. Thus, malformation of the stria vascularis appears to be the primary defect in the inner ear of the German waltzing guinea pig. Defective and insufficient numbers of melanocytes might migrate to the developing stria vascularis but fail to provide the proper support for the subsequent development of marginal and basal cells, thereby leading to stria vascularis malformation and dysfunction in the inner ear of the German waltzing guinea pig.  相似文献   

10.
11.
Mitf has been reported to play a crucial role in regulating the differentiation of pigment cells in homeothermal animals, i.e. the melanocytes and the retinal pigment epithelium (RPE). However, less is known about the functions of Mitf in the developing RPE. To elucidate such functions, we introduced wild-type and dominant-negative Mitf expression vectors into chick optic vesicles by electroporation. Over-expression of wild-type Mitf altered neural retina cells to become RPE-like and repressed the expression of neural retina markers in vivo. In contrast, dominant-negative Mitf inhibited pigmentation in the RPE. The percentage of BrdU-positive cells decreased during normal RPE development, which was followed by Mitf protein expression. The percentage of BrdU-positive cells decreased in the wild-type Mitf-transfected neural retina, but increased in the dominant-negative Mitf-transfected RPE. p27kip1, one of the cyclin-dependent kinase inhibitors, begins to be expressed in the proximal region of the RPE at stage 16. Transfection of wild-type Mitf induced expression of p27kip1, while transfection of dominant-negative Mitf inhibited p27kip1 expression. We found that Mitf was associated with the endogenous p27kip1 5′ flanking region. These results demonstrate for the first time “in vivo” that Mitf uniquely regulates both differentiation and cell proliferation in the developing RPE.  相似文献   

12.
Inner ear cells, including hair cells, spiral ganglion cells, stria vascularis cells and supporting cells on the basilar membrane, play a major role in transducing hearing signals and regulating inner ear homoeostasis. However, their functions are often damaged by antibiotic-induced ototoxicity. Apoptosis is probably involved in inner ear cell injury following aminoglycoside treatment. Calpain, a calcium-dependent protease, is essential for mediating and promoting cell death. We have therefore investigated the involvement of calpain in the molecular mechanism underlying ototoxicity induced by the antibiotic kanamycin in mice. Kanamycin (750 mg/kg) mainly induced cell death of cochlear cells, including stria vascularis cells, supporting cells and spiral ganglion cells, but not hair cells within the organ of Corti. Cell death due to apoptosis occurred in a time-dependent manner with concomitant up-regulation of calpain expression. Furthermore, the expression levels of two microRNAs, mir34a and mir34c, were altered in a dose-dependent manner in cochlear cells. These novel findings demonstrated the involvement of both calpain and microRNAs in antibiotic-induced ototoxicity.  相似文献   

13.
Melanocytes characterized by the activities of tyrosinase, tyrosinase‐related protein (TRP)‐1 and TRP‐2 as well as by melanosomes and dendrites are located mainly in the epidermis, dermis and hair bulb of the mammalian skin. Melanocytes differentiate from melanoblasts, undifferentiated precursors, derived from embryonic neural crest cells. Because hair bulb melanocytes are derived from epidermal melanoblasts and melanocytes, the mechanism of the regulation of the proliferation and differentiation of epidermal melanocytes should be clarified. The regulation by the tissue environment, especially by keratinocytes is indispensable in addition to the regulation by genetic factors in melanocytes. Recent advances in the techniques of tissue culture and biochemistry have enabled us to clarify factors derived from keratinocytes. Alpha‐melanocyte‐stimulating hormone, adrenocorticotrophic hormone, basic fibroblast growth factor, nerve growth factor, endothelins, granulocyte‐macrophage colony‐stimulating factor, steel factor, leukemia inhibitory factor and hepatocyte growth factor have been suggested to be the keratinocyte‐derived factors and to regulate the proliferation and/or differentiation of mammalian epidermal melanocytes. Numerous factors may be produced in and released from keratinocytes and be involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes through receptor‐mediated signaling pathways.  相似文献   

14.
The Light mutation (Blt) is a dominant allele of the b-locus on mouse chromosome 4 which causes progressive dilution of coat colour. Melanocytes within the hair follicles of mutant mice develop normally but later degenerate, due to the accumulation of a toxic product, so that the hair becomes lighter with age. Previous studies on W-locus spotting mutants, from which melanocytes are absent, have shown that melanocytes in the stria vascularis of the inner ear are essential for the development and/or maintenance of the endocochlear potential (EP) which is normally around 100 mV. In this study, physiological recordings from the ears of Light mutants were correlated with strial ultrastructure. EPs recorded from all b/b controls and young homozygous and heterozygous mutants (20–22 days old) were normal (77 to 113 mV), but were reduced (19 to 59 mV) in about 30% of ears from older mutants (Blt/Blt and Blt/b). Strial function therefore appears to develop normally but later degenerates in some mutants. This suggests that strial melanocytes are affected by the Light allele and that the continued presence of melanocytes is necessary for strial function. There was no obvious association between the recorded EP value and the ultrastructural appearance of the stria. No structural abnormalities of the stria were noted in control or mutant mice aged 20 days to 4 months including those which had a reduced EP. Strial atrophy was common in old controls and mutants (1–2 years), and appeared to be an age-related process rather than an effect of the Light mutation. Similarly, pigment build-up was common in all strial cells of old mice. However, the accumulations of lipofuscin-like pigment were much larger and more abundant in aged brown non-agouti mice than those observed in old agouti mice, which suggests that this age-related process also has a genetic component.  相似文献   

15.
16.
目的:观察电码针对豚鼠庆大霉素(GE)耳毒性的防治作用,方法:测定脑干听觉诱发电位(BAEP)和用组织化学方法测定耳蝇毛细胞及血管纹的琥珀酸脱氢酶(SDH)。结果:电针能降低CE引起的BAEP反应阈的上升幅度,缩小BAEP波峰潜伏期及波峰间期的延长;能保护毛细胞及耳蜗血管纹细胞线粒体呼吸酶的活性。结论:电针能降低GE5的耳毒性,保护毛细胞及耳蜗血管纹细胞线粒体酶的活性。保证这些细胞能量代谢,维持细胞所需要能量的各种功能的活动。减少细胞的损伤,可能有是电针防治GE耳毒性的机制之一。  相似文献   

17.
The cochlear stria vascularis produces the positive endocochlear potential (EP) and the endolymph. Both the EP and the endolymph are essential for the physiological function of hair cells. The intermediate cell is one of several cell types constituting the stria vascularis. It is known that inward rectifier K+ channels can play a constitutive role in the determination of the resting membrane potential. Localization of a member of the inward rectifier K+ channel family, Kir4.1, in the stria vascularis of gerbils and rats was investigated by immunological methods. A polyclonal antibody specific to the C-terminus of the rat Kir4.1 channel was raised in rabbits. Immunostaining of dissociated cells revealed that the Kir4.1 channel was localized to the intermediate cell, but not to the epithelial marginal cell. Subcellular localization of the Kir4.1 channel to the plasma membrane of the intermediate cell was confirmed by immunoelectron microscopy. Immunostaining of whole-tissue preparations revealed a network-like structure composed of intermediate cells. It seems likely that the Kir4.1 channel mediates the inwardly rectifying K+ current in the intermediate cell as shown previously by electrophysiological methods, and that this channel plays key roles in the production of the EP and K+ transport in the stria vascularis.  相似文献   

18.
Summary Deafness in the viable dominant spotting mouse mutant is due to a primary defect of the stria vascularis which results in absence of the positive endocochlear potential in scala media. Endocochlear potentials were measured and the structure of stria vascularis of mutants with potentials close to zero was compared with that in normal littermate controls by use of morphometric methods. The stria vascularis was significantly thinner in mutants. Marginal cells were not significantly differnet from controls in terms of volume density or intramembrane particle density but the network density of tight junctions was significantly reduced in the mutants. A virtual absence of gap junctions between basal cells and marginal or intermediate cells was observed, but intramembrane particle density and junctional complexes between adjacent basal cells were not different from controls. The volume density of basal cells was significantly greater in mutants. Intermediate cells accounted for a significantly smaller volume density of the stria vascularis in mutants and had a lower density of intramembrane particles than controls. Melanocytes were not identified in the stria vascularis of mutants. These results suggest that communication between marginal, intermediate and basal cells might be important to the normal function of the stria vascularis.  相似文献   

19.
Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV‐infected cochleas that mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia in mouse CMV‐infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a relevant and reliable platform within which the detailed cell and molecular biology of CMV‐induced deafness may be studied. Birth Defects Research (Part A), 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号