首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative and carbonyl stress are detrimental in the pathogenesis of diabetic complications, as well as in other chronic diseases. However, this process may be decreased by dietary bioactive compounds. Almond skin is an abundant source of bioactive compounds and antioxidants, including polyphenolic flavonoids, which may contribute to the decrease in oxidative and carbonyl stress. In this study, four Almond Skin Extracts (ASEI, ASEII, ASEIII, and ASEIV) were prepared by different methods and evaluated for their antioxidant activity. The order of the polyphenol content (total μM gallic acid equivalents) of the four extracts was found to be, in decreasing order of effectiveness: ASEI > ASEIII > ASEIV > ASEII. The order of Ferric-reducing antioxidant power (FRAP, μM FeSO4/g) value, in decreasing order was ASEI (216) > ASEIII (176) > ASEIV (89) > ASEII (85). The order of ASE effectiveness for decreasing protein carbonyation induced by the copper Fenton reaction was ASEI > ASEIV > ASEII > ASEIII. The order of antioxidant effectiveness for inhibiting tertiary-butyl hydroperoxide (TBH) induced microsomal lipid peroxidation was ASEI > ASEIV > ASEII, ASEIII. Also, the order of ASE effectiveness for inhibiting TBH induced hepatocyte cell death was: ASEIII, ASEIV > ASEI, ASEII. Catechin also protected hepatocytes from TBH induced hepatocyte, lipid peroxidation and cytotoxicity. In a cell free model, equimolar concentrations of catechin or epicatechin rescued serum albumin from protein carbonylation induced by methylglyoxal (MGO). Catechin, epicatechin and ASEI all decreased gloxal induced hepatocyte cell death and reactive oxygen species (ROS) formation in GSH-depleted hepatocytes. Catechin and epicatechin protected against GO or MGO induced hepatocyte cell death, protein carbonylation and ROS formation. Catechin was more effective than epicatechin. Our results suggest that (a) bioactive almond skin constituents in the non-lipophilic polyphenol extract were the most effective at protecting hepatocytes against hydroperoxide induced hepatocyte oxidative stress and in protecting against dicarbonyl induced cytotoxicity; (b) catechins, the major polyphenol in the extract, were also effective at preventing GO or MGO cytotoxicity likely by trapping GO and MGO and/or rescuing hepatocytes from protein carbonylation.  相似文献   

2.
Common sage (Salvia officinalis L., Lamiaceae) is an aromatic and medicinal plant well known for its antioxidant properties. Some in vivo studies have shown the biological antioxidant effects of sage. However, the intracellular antioxidant mechanisms of action are still poorly understood. In this study, we evaluated the cytoprotective effects of two sage extracts (a water and a methanolic extract) against tert-butyl hydroperoxide (t-BHP)-induced toxicity in HepG2 cells. The most abundant phenolic compounds present in the extracts were rosmarinic acid and luteolin-7-glucoside. Both extracts, when co-incubated with the toxicant, protected significantly HepG2 cells against cell death. The methanolic extract, with a higher content of phenolic compounds than the water extract, conferred better protection in this in vitro model of oxidative stress with liver cells. Both extracts, tested in a concentration that protects 80% against cell death (IC(80)), significantly prevented t-BHP-induced lipid peroxidation and GSH depletion, but not DNA damage assessed by the comet assay. The ability of sage extracts to reduce t-BHP-induced GSH depletion by 62% was probably the most relevant contributor to the observed cytoprotection. A good correlation between the above cellular effects of sage and the effects of their main phenolic compounds was found. When incubated alone for 5h, sage extracts induced an increase in basal GSH levels of HepG2 cells, which indicates an improvement of the antioxidant potential of the cells. Compounds present in sage extracts other than phenolics may also contribute to this latter effect. Based in these results, it would be of interest to investigate whether sage has protective effects in suitable in vivo models of liver diseases, where it is known that oxidative stress is involved.  相似文献   

3.
Past studies have shown the protective effects of tea catechins on oxidative cell damage induced by 6-OHDA in PC12 cells. In this study we verified whether or not catechin prevents 6-OHDA-induced oxidative cell damage in primary cultures of rat mesencephalic cells. On exposure to 6-OHDA (200 microM), the cultures showed a marked decrease in cell viability, disturbances in lipid peroxidation, and an increased generation of NO, as assayed by MTT, TBARS and nitrite assays, respectively. Introduction of catechin significantly attenuated the cell death caused by 6-OHDA at concentrations of 3.4, 34 and 340 microM in a dose-related manner. Catechin produced no marked changes on 6-OHDA-induced increases in NO, but caused a significant inhibition of lipid peroxidation. These results suggest that catechins offer similar cytoprotection against 6-OHDA-induced oxidative cell damage in mesencephalic cell cultures, as previously described in PC12 cells. The cytoprotective function of catechin results from its antioxidant property and is not due to the inhibition of nitric oxide synthase. These findings further support and substantiate traditional consumption of catechin rich green/black tea as protection against neurodegenerative diseases like Parkinsonism.  相似文献   

4.
Yau MH  Che CT  Liang SM  Kong YC  Fong WP 《Life sciences》2002,72(3):329-338
Different in vitro free radical generating systems were used to assess the antioxidative activity of aqueous extracts of the five herbal components of Wu-zi-yan-zong-wan, a traditional Chinese medicinal formula with a long history of use for tonic effects. Fructus Rubi [Rubus chingii (Rosaceae) fruits] was found to be the most potent. It was further investigated using the primary rat hepatocyte system. tert-Butyl hydroperoxide (t-BHP) was used to induce oxidative stress. Being a short chain analog of lipid hydroperoxide, t-BHP is metabolized into free radical intermediates by the cytochrome P450 system in hepatocytes, which in turn, initiate lipid peroxidation, glutathione depletion and cell damage. Pre-treatment of hepatocytes with Fructus Rubi extract (50 microg/ml to 200 microg/ml) for 24 h significantly reversed t-BHP-induced cell viability loss, lactate dehydrogenase leakage and the associated glutathione depletion and lipid peroxidation. The amount of reactive oxygen species formed was also decreased as visualized by the fluorescence probe 2',7'-dichlorofluorescin diacetate. These results suggested that Fructus Rubi was useful in protecting against t-BHP-induced oxidative damage and may also be capable of attenuating cytotoxicity of other oxidants.  相似文献   

5.
Mitochondrial electron transport inhibitors induced two distinct pathways for acute cell death: lipid peroxidation-dependent and -independent in isolated rat hepatocytes. The toxic effects of mitochondrial complex I and II inhibitors, rotenone (ROT) and thenoyltrifluoroacetone (TTFA), respectively, were dependent on oxidative stress and lipid peroxidation, while cell death induced by inhibitors of complexes III and IV, antimycin A (AA) and cyanide (CN), respectively, was caused by MMP collapse and loss of cellular ATP. Accordingly, cellular and mitochondrial antioxidant depletion or supplementation, in general, resulted in a dramatic potentiation or prevention, respectively, of toxic injury induced by complex I and II inhibitors, with little or no effect on complex III and IV inhibitor-induced toxicity. ROT-induced oxidative stress was prevented by the addition of d-alpha-tocopheryl succinate (TS) but surprisingly TS did not afford hepatocytes protection against TTFA-induced oxidative damage. TS treatment prevented ROT-induced mitochondrial lipid hydroperoxide formation but had no effect on the loss of mitochondrial GSH or cellular ATP, suggesting a mitochondrial lipid peroxidation-mediated mechanism for ROT-induced acute cell death. In contrast, only fructose treatment provided excellent cytoprotection against AA- and CN-induced toxicity. Our findings indicate that complex III and IV inhibitors cause a rapid and severe depletion of cellular ATP content resulting in acute cell death that is dependent on cellular energy impairment but not lipid peroxidation. In contrast, inhibitors of mitochondrial complex I or II moderately deplete cellular ATP levels and thus cause acute cell death via a lipid peroxidation pathway.  相似文献   

6.
Most animals synthesize ascorbate. It is an essential enzymatic cofactor for the synthesis of a variety of biological molecules and also a powerful antioxidant. There is, however, little direct evidence supporting an antioxidant role for endogenously produced ascorbate. Recently, we demonstrated that incubation of rat hepatocytes with 1-bromoheptane or phorone simultaneously depleted glutathione (GSH) and triggered rapid ascorbate synthesis. The present study investigates the hypothesis that endogenous ascorbate synthesis can confer protection against oxidative stress. Rat and guinea pig hepatocytes were depleted of GSH with 1-bromoheptane and subsequently treated with the oxidative stressor cumene hydroperoxide (CHP) in the presence or absence of the ascorbate synthesis inhibitor sorbinil. In rat hepatocytes, ascorbate content increased linearly (from 15.1 to 35.8 nmol/10(6) cells) over a 105-min incubation. Prior depletion of GSH increased CHP-induced cellular reactive oxygen species (ROS) production, lipid peroxidation, and cell death in rat and guinea pig hepatocytes. Inhibiting ascorbate synthesis, however, further elevated ROS production (2-fold), lipid peroxidation (1.5-fold), and cell death (2-fold) in rat hepatocytes only. This is the first time that endogenous ascorbate synthesis has been shown to decrease cellular susceptibility to oxidative stress. Protection by endogenously produced ascorbate may therefore need to be addressed when extrapolating data to humans from experiments using rodents capable of synthesizing ascorbate.  相似文献   

7.
The mechanism of alpha-tocopheryl succinate (TS) cytoprotection against mitochondria-derived oxidative stress was investigated. Incubation of isolated rat hepatocytes with ethyl methanesulfonate (EMS), a mitochondrial alkylating toxicant caused mitochondrial dysfunction and necrotic cell death that was dependent on the production of reactive oxygen species (ROS) and lipid peroxidation. Mitochondria isolated from these cells showed a 3-fold increase in lipid hydroperoxides and a selective depletion of alpha-tocopherol (T), which preceded cell death. The pretreatment of hepatocytes with TS dramatically enriched cells and mitochondria with alpha-tocopherol and provided these membranes with complete protection against EMS-induced oxidative damage. TS pretreatment suppressed EMS-induced cellular ROS production, generated from mitochondrial complex I and III sites. In addition, the treatment with either rotenone (ROT, a complex I inhibitor) or antimycin A (AA, a complex III inhibitor) potentiated EMS-induced lipid peroxidation and necrotic cell death which were again completely prevented by TS treatment. Surprisingly, TS did not protect hepatocytes against thenoyltrifluoroacetone (TTFA), a complex II inhibitor-induced enhancement of EMS-induced toxic oxidative damage. We conclude that the inhibition of mitochondrial ROS production and lipid peroxidation by T released from TS, are the critical events responsible for TS-mediated cytoprotection against toxic oxidative stress derived from both mitochondrial complexes I and III. Our findings suggest that TS treatment may prove useful in combating diseases associated with mitochondrial-derived oxidative stress.  相似文献   

8.
Comparison of the protective effect of three antioxidants (from three different chemical classes) against cell injury due to LDL oxidation, allowed us to clearly discriminate between two different lines of defence. The ultraviolet-induced lipid peroxidation of LDL was strongly inhibited by 10 mumol/l catechin and 25 mumol/l probucol, but only poorly by 100 mumol/l vitamin E. The ultraviolet-treated LDL protected by catechin or probucol (i.e. LDL irradiated by ultraviolet in the presence of effective concentrations of antioxidants inhibiting the lipid peroxidation) were much less 'cytotoxic' than unprotected ultraviolet-treated LDL. In contrast, LDL treated by ultraviolet in the presence of 100 mumol/l vitamin E were 'cytotoxic' similarly to unprotected LDL. The level of 'cytotoxicity' of LDL treated by ultraviolet in the presence of antioxidants (protected ultraviolet-treated LDL) was well correlated with their content in lipid peroxidation markers. Therefore these markers can be useful for predicting the 'cytotoxicity' of oxidized LDL and subsequently the protective effect of the tested antioxidants. The 'cytotoxicity' of unprotected ultraviolet-treated LDL (i.e. LDL irradiated by ultraviolet in the absence of exogenous antioxidant) can be effectively blocked by preincubation of the cells with antioxidants. Catechin (10 mumol/l) and vitamin E (100 mumol/l) are very effective cytoprotective agents, whereas probucol (up to 50 mumol/l) was completely ineffective under these experimental conditions. The cytoprotective effect of vitamin E was associated to a complete inhibition of the cellular TBARS formation induced by ultraviolet-treated LDL, whereas the cytoprotective effect of catechin was relatively independent on the TBARS inhibition. All these results showed that: (1) probucol (25 mumol/l) is very effective to prevent lipid peroxidation of LDL and their subsequent 'cytotoxicity', but it cannot protect cells against the 'cytotoxicity' of previously oxidized LDL; (2) vitamin E (100 mumol/l) prevents poorly the ultraviolet-induced lipid peroxidation of LDL, but is able to block simultaneously the cellular oxidative stress and the 'cytotoxicity' induced by previously oxidized LDL; and (3) catechin (10 mumol/l) exhibited two types of protective effects: it inhibits the lipid peroxidation of LDL (and their subsequent 'cytotoxicity') and very effectively protects the cells against 'toxicity' of previously oxidized LDL (with only little inhibition of the cellular oxidative stress).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In the present work, the potential hepatoprotective effects of five phenolic compounds against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH leakage, increased lipid peroxidation, DNA damage as well as decreased levels of reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell death induced by t-BHP (when in co-incubation). If the effects of quercetin are given the reference value 1, the compounds rank in the following order according to inhibition of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-glucoside (0.30) > caffeic acid (0.21). The results underscore the importance of the compound's lipophilicity in addition to its antioxidant potential for its biological activity. All tested phenolic compounds were found to significantly decrease lipid peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the natural antioxidants tested appeared to be of even greater importance for DNA protection than for cell survival. The protective potential against cell death was probably achieved mainly by preventing intracellular GSH depletion. The phenolic compounds studied here showed protective potential against oxidative damage induced in HepG2 cells. This could be beneficial against liver diseases where it is known that oxidative stress plays a crucial role.  相似文献   

10.
Opuntia ficus-indica L. is known for its beneficial effects on human health, but still little is known on cladodes as a potent source of antioxidants. Here, a direct, economic and safe method was set up to obtain water extracts from Opuntia ficus-indica cladodes rich in antioxidant compounds. When human keratinocytes were pre-treated with the extract before being exposed to UVA radiations, a clear protective effect against UVA-induced stress was evidenced, as indicated by the inhibition of stress-induced processes, such as free radicals production, lipid peroxidation and GSH depletion. Moreover, a clear protective effect against apoptosis in pre-treated irradiated cells was evidenced. We found that eucomic and piscidic acids were responsible for the anti-oxidative stress action of cladode extract. In conclusion, a bioactive, safe, low-cost and high value-added extract from Opuntia cladodes was obtained to be used for skin health/protection.  相似文献   

11.
Mutagenicity induced by tert-butyl hydroperoxide (BHP) or cumene hydroperoxide (CHP) in Salmonella typhimurium TA102 was effectively reduced by flavonols with 3',4'-hydroxyl groups such as fisetin, quercetin, rutin, isoquercitrin, hyperoxide, myricetin, myricitrin, robinetin, and to a lesser extent also by morin and kaempferol (ID50=0.25-1.05 micromol per plate). With the exception of isorhamnetin, rhamnetin, morin, and kaempferol, closely similar results were obtained with both peroxides. Hydrogenation of the double bond between carbons 2 and 3 (dihydroquercetin, dihydrorobinetin) as well as the additional elimination of the carbonyl function at carbon 4 (catechins) resulted in a loss of antimutagenicity with the notable exception of catechin itself. Again, all flavones and flavanones tested were inactive except luteolin, luteolin-7-glucoside, diosmetin, and naringenin. The typical radical scavenger butylated hydroxytoluene also showed strong antimutagenicity against CHP (ID50=5.4 micromol per plate) and BHP (ID50=11.4 micromol per plate). Other lipophilic scavengers such as alpha-tocopherol and N,N'-diphenyl-1,4-phenylenediamine exerted only moderate effects, the hydrophilic scavenger trolox was inactive. The metal chelating agent 1,10-phenanthroline strongly reduced mutagenicities induced by CHP and BHP (ID50=2.75 and 2.5 micromol per plate) at low concentrations but induced mutagenic activities at higher concentrations. The iron chelator deferoxamine mesylate, however, was less effective in both respects. The copper chelator neocuproine effectively inhibited mutagenicity induced by BHP (ID50=39.7 micromol per plate) and CHP (ID50=25.9 micrommol per plate), the iron chelator 2,2'-dipyridyl was less potent (ID50=6.25 mmol per plate against BHP, 0.42 mmol per plate against CHP). In the absence of BHP and CHP, yet not in the presence of these hydroperoxides, quercetin, rutin, catechin, epicatechin, and naringenin induced strong mutagenic activities in S. typhimurium TA102. Radical scavenging activities of flavonoids against peroxyl radicals generated from 2,2'-azo-bis(2-amidinopropane)dihydrochloride (AAPH) as measured in the haemolysis test, confirmed that in general flavonoids with di- or trihydroxy hydroxyl functions especially in positions 3', 4', 5' are effective radical scavengers. In this test system, however, luteolin was the most potent compound, followed by epicatechin and eriodictyol. Again, isorhamnetin was a potent inhibitor of lysis of red blood cells despite the presence of a 3'-OCH3 function. Radical scavenging activities of flavonoids against the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in principle obeyed the rules outlined above. Flavanones, tamarixetin, and rhamnetin, however, were only weakly active against DPPH, while isorhamnetin was again a potent compound. From these results we conclude that in the Salmonella/reversion assay with strain TA102 antimutagenic activities of flavonoids against the peroxide mutagens CHP and BHP are mainly caused by radical scavenging effects.  相似文献   

12.
The petroleum ether, chloroformic, ethyl acetate, methanolic, Total Oligomers Flavonoids (TOF) enriched extracts, water extract as well as its fractions A1, A2, A3 obtained from aerial parts ofRhamnus alaternus, a Tunisian-Mediterranean medicinal species, were investigated for the contents of phenolic compounds, cytotoxic activity against the K562 human chronic myelogenous leukaemia cell line and L1210 leukaemia murine cells and for antibacterial activity against Gram positive and Gram negative bacterial reference strains. A pronounced cytotoxic effect on both the cell lines was shown in the TOF, ethyl acetate, methanolic, aqueous extracts and A2 fraction, with respectively IC50 values 75, 232, 298, 606 and 571 μg/ml on K562 cells and 198, 176, 767, 560 and 614 μg/ml on L1210 cell line. Significant activity against bacterial reference strains:Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Salmonella enteritidis andSalmonella typhimurium was shown with ethyl acetate, TOF extracts and A2 fraction. The antimicrobial and cytotoxic activities showed byR. alatemus depended on the chemical composition of the tested extracts.  相似文献   

13.
The current investigation focuses attention on the neuroprotective and antioxidant properties of aqueous extracts from Halimeda incrassata (Hi) and Bryothamniom triquetrum (Bt) in the mouse immortalized hypothalamic GT1-7 cell line. Under basal oxidative conditions, Hi extract reduces intracellular reactive oxygen species production, as assessed by 2',7'-dichlorofluorescein fluorescence, while Bt extract does not contribute to basal ROS generation. Both extracts, at concentrations higher than 0.20 mg/ml, exert protection against hydrogen peroxide-mediated cell death, although only Hi extract can additionally prevent hydrogen peroxide-induced ROS production. The two seaweed aqueous extracts, at concentrations higher than 0.05 mg/ml, also display protection against neuronal death induced by methyl mercury chloride, as well as against methyl mercury chloride-mediated ROS generation. None of the extracts increase GSH intracellular pools, in basal conditions, after depleting its levels with either hydrogen peroxide or methyl mercury chloride. Some comments on the probable targets of the neuroprotection exerted by these two extracts are included in this paper.  相似文献   

14.
15.
The potential protective effects of the flavanol catechin, the flavonol quercetin, the flavones, luteolin and rutin, and the isoflavones, genistein and daidzein, against the photo-oxidative stress induced by ultraviolet A radiation (UVA) and by phototoxic reactions resulting from the interaction of UVA with drugs and chemicals, has been assessed with cultured human skin fibroblasts. Lipid peroxidation and cell death have been chosen as model photobiological damage induced by UVA alone or photosensitized by cyamemazine (CMZ) and its photoproduct possessing phototoxic properties. Contrasting effects of flavonoids are observed. The flavanol, the flavonol and the flavones may protect against lipid peroxidation and cell death induced by 30 J cm(-2) of UVA alone or CMZ plus 10 J cm(-2) UVA. On the other hand, an amplification of the photodamage may be observed with isoflavones. A concentration-dependence study demonstrates that among the protective flavonoids, quercetin is the most efficient. The very effective protection brought by quercetin may result from its ability to scavenge reactive oxygen species produced by the photo-oxidative stress. However, the modification of membrane properties and the alteration of the lysosomal function by quercetin may not be neglected in these protective effects. The amplification of the photodamage by isoflavones is in sharp contrast with previous literature data demonstrating photoprotection by genistein. As a consequence, it may be concluded that an eventual antioxidant action of genistein may strongly depend on cells and photosensitizers. Furthermore such contrasting pro-versus anti-oxidant effects have to be taken into account when using flavonoid mixtures of plant extracts.  相似文献   

16.
Ferulic acid ethyl ester (FAEE) is an ester derivative of ferulic acid, the latter known for its anti-inflammatory and antioxidant properties. Previous studies from our laboratory have shown that ferulic acid protects synaptosomal membrane system and neuronal cell culture systems against hydroxyl and peroxyl radical oxidation. FAEE is lipophilic and is able to penetrate lipid bilayer. Previous studies reported that FAEE reduces Alzheimer's amyloid beta peptide Abeta(1-42)-induced oxidative stress and cytotoxicity in neuronal cell culture by direct radical scavenging and by inducing certain antioxidant proteins. In the present study we tested the hypothesis that FAEE would provide neuroprotection against free radical oxidative stress in vivo. Synaptosomes were isolated from the gerbils that were previously injected intraperitoneally (i.p.) with FAEE or DMSO and were treated with oxidants, Fe(2+)/H(2)O(2) or 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH). Synaptosomes isolated from the gerbil previously injected i.p. with FAEE and treated with Fe(2+)/H(2)O(2) and AAPH showed significant reduction in reactive oxygen species (ROS), levels of protein carbonyl, protein bound 4-hydroxynonenal (HNE, a lipid peroxidation product), and 3-nitrotyrosine (3-NT, another marker of protein oxidation formed by reaction of tyrosine residues with peroxynitrite) compared to Fe(2+)/H(2)O(2) or AAPH induced oxidative stress in synapotosomes isolated from the brain of gerbils that were previously injected with DMSO. The synaptosomes isolated from gerbil pre-injected with FAEE and subsequently treated with AAPH or Fe(2+)/H(2)O(2) showed induction of heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) but reduced inducible nitric oxide synthase (iNOS) levels. These results are discussed with reference to potential use of this lipophilic antioxidant phenolic compound in the treatment of oxidative stress-related neurodegenerative disorders.  相似文献   

17.
It has been reported that the bioactive intermediate metabolites of trazodone might cause hepatotoxicity. This study was designed to investigate the exact mechanism of hepatocellular injury induced by trazodone as well as the protective effects of taurine and/or melatonin against this toxicity. Freshly isolated rat hepatocytes were used. Trazodone was cytotoxic and caused cell death with LC50 of 300 µm within 2 h. Trazodone caused an increase in reactive oxygen species (ROS) formation, malondialdehyde accumulation, depletion of intracellular reduced glutathione (GSH), rise of oxidized glutathione disulfide (GSSG), and a decrease in mitochondrial membrane potential, which confirms the role of oxidative stress in trazodone‐induced cytotoxicity. Preincubation of hepatocytes with taurine prevented ROS formation, lipid peroxidation, depletion of intracellular reduced GSH, and increase of oxidized GSSG. Taurine could also protect mitochondria against trazodone‐induced toxicity. Administration of melatonin reduced the toxic effects of trazodone in isolated rat hepatocytes. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:457‐462, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21509  相似文献   

18.
《Free radical research》2013,47(1-2):57-68
The effects of oxidative stress caused by hyperoxia or administration of the redox active compound diquat were studied in isolated hepatocytes, and the relative contribution of lipid peroxidation, glutathione (GSH) depletion, and NADPH oxidation to the cytotoxicity of active oxygen species was investigated.

The redox cycling of diquat occurred primarily in the microsomal fraction since diquat was found not ' to penetrate into the mitochondria. Depletion of intracellular GSH by pretreatment of the animals with diethyl maleate promoted lipid peroxidation and sensitized the cells to oxidative stress. Diquat toxicity was also greatly enhanced when glutathione reductase was inhibited by pretreatment of the cells with 1,3-bis(2-chloroethyI)-1-nitrosourea. Despite extensive lipid peroxidation, loss of cell viability was not observed, with either hyperoxia or diquat, until the GSH level had fallen below ≈ 6 nmol/106 cells.

The iron chelator desferrioxamine provided complete protection against both diquat-induced lipid peroxidation and loss of cell viability. In contrast, the antioxidant a-tocopherol inhibited lipid peroxidation but provided only partial protection from toxicity. The hydroxy! radical scavenger α-keto-γ-methiol butyric acid, finally, also provided partial protection against diquat toxicity but had no effect on lipid peroxidation.

The results indicate that there is a critical GSH level above which cell death due to oxidative stress is not observed. As long as the glutathione peroxidase – glutathione reductase system is unaffected, even relatively low amounts of GSH can protect the cells by supporting glutathione peroxidase-mediated metabolism of H2O2 and lipid hydroperoxides.  相似文献   

19.
We have investigated the effects of persimmon (Diospyros kaki) extract (PS) and related polyphenol compounds such as catechin (C), epicatechin (EC), epicatechingallate (ECG), epigallocatechin (EGC), and epigallocatechingallate (EGCG) on the growth of human lymphoid leukemia Molt 4B cells. We found that PS, ECG, EGC, and EGCG strongly inhibited the growth of the cells in a dose-dependent manner, while C and EC inhibited the growth of the cells only moderately. Ornithine decarboxylase (ODC), a rate-limiting enzyme of polyamine biosynthesis, was inhibited by 10–20% by these polyphenol compounds. The morphology of the Molt 4B cells indicated severe damage 3 days after treatment with PS, ECG, EGC, and EGCG. Irregular shape of the cells and DNA fragmentation were observed in PS, ECG, EGC, or EGCG-treated cells. These results suggest that PS, ECG, EGC, and EGCG induce apoptosis (programmed cell death) of Molt 4B cells.  相似文献   

20.
Rosemary is commonly used as a spice and a flavoring agent in food processing. Although the antioxidative properties of its extracts have been investigated, there have been few reports on the volatile components of rosemary. We designed a novel antioxidative system which can generate the volatile constituents in the gaseous phase from a rosemary extract and evaluated the gaseous antioxidative activities against both lipid peroxidation and cell death induced by nitrogen dioxide and ultraviolet radiation. The antioxidative effects of the major volatile components on the oxidation of linoleic acid induced by azo compounds were also investigated in a solution. The volatile components in the novel antioxidative system suppressed the Jurkat cell death induced by nitrogen dioxide and the intracellular formation of reactive oxygen species in fibroblast cells induced by ultraviolet radiation. 1,8-Cineole among the volatile components exerted an antioxidative effect against the oxidation of linoleic acid in a solution induced by azo compounds and ultraviolet radiation. These data suggest that the volatile constituents of a rosemary extract had antioxidative properties and that gaseous exposure antioxidant is a promising method for promoting health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号