首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Experiments were conducted to evaluate two extenders (egg-yolk Tris and egg-yolk lactose), varying concentrations of two cryopreservatives (glycerol and dimethyl sulfoxide), and rates for cooling to 5 degrees C, cooling from 5 to -100 degrees C, and warming for canine spermatozoa packaged in 0.5-ml French straws. At optimal concentrations of glycerol, egg-yolk Tris extender was superior to egg-yolk lactose in preserving spermatozoal motility. Addition of dimethyl sulfoxide, alone or in combination with glycerol in either extender, was not beneficial to spermatozoal survival after thawing. Canine spermatozoa withstood a range of cooling and equilibration times with no detrimental effect on spermatozoal motility prior to freezing. However, there were differences in spermatozoal motility immediately after thawing; these differences were variable, resulting in a cooling time by equilibration time interaction. Spermatozoal motility after thawing was best preserved by freezing in egg-yolk Tris extender containing 2-4% glycerol, using a moderate rate of cooling from 5 to -100 degrees C (-5 degrees C/min from 5 to -15 degrees C, then -20 degrees C/min from -15 to -100 degrees C). Three of 12 bitches inseminated intravaginally with semen frozen using this protocol became pregnant.  相似文献   

2.
Experiments were conducted to develop a suitable protocol for cryopreservation of spotted skunk semen. Semen was collected by electroejaculation of captive male skunks (n = 16) from late January through late November. In the first experiment, fresh semen was diluted in either TEST (n = 10), TRIS (n = 9), or BF5F (n = 7) extenders and maintained at 4°C for 16 hr. Sperm motility in these extenders was not significantly different before cooling (P = 0.71), but samples diluted with BF5F exhibited significantly lower sperm motility than the other extenders at all time points after cooling (P < 0.05). In the second experiment, fresh semen was diluted in TEST containing either 3, 5, or 10% DMSO or 3, 5, or 10% glycerol as a cryopreservative. These samples were cooled to 4°C and frozen in 0.25 ml French straws on dry ice. Some samples containing 5% DMSO or 5% glycerol (n = 4), were also frozen on dry ice as pellets. Frozen samples were maintained in liquid nitrogen. Fresh samples had significantly greater sperm motility in dimethyl sulfoxide (DMSO) than in glycerol (P < 0.05), while frozen and thawed samples had the highest motility in 5 or 10% DMSO or 10% glycerol. Samples frozen in French straws had significantly greater sperm motility after freezing and thawing than those frozen by the pellet method (P < 0.05). Optimum cryoprotection was achieved with the TEST extender containing 5 or 10% DMSO, when used in conjunction with French straws. © 1992 Wiley-Liss, Inc.  相似文献   

3.
Yildiz C  Kaya A  Aksoy M  Tekeli T 《Theriogenology》2000,54(4):579-585
Influence of different sugars supplemented to the extender on the motility, viability and intact acrosome rates of dog spermatozoa during dilution, equilibration and freezing was studied. The ejaculate was divided into 10 aliquots, which were diluted 1:3 with TRIS-citric acid extender containing 240 mMTRIS, 63 mM citric acid, 8% (v/v) glycerol, 20% (v/v) egg yolk and 70 mM sugar, which was either fructose, galactose, glucose, xylose (monosaccharide), lactose, trehalose, maltose, sucrose (disaccharide) or raffinose (trisaccharide). No sugar was added to the extender in the control group. Extended semen samples were cooled to 5 degrees C over 45 min, packaged in 0.25-mL straws, equilibrated for 2 h at 5 degrees C and frozen in liquid nitrogen vapor. Samples were thawed by placing straws into 37 degrees C water for 30 sec. Motility, viable sperm and intact acrosome rates decreased gradually in all groups after equilibration and consecutively freezing (P<0.001). The type of sugar significantly effected motility, viability and acrosomal integrity during equilibration and freezing (P<0.05). Galactose, lactose, trehalose, maltose and sucrose reduced damaged acrosome percentages in equilibrated samples (P<0.05). Sugar supplementation did not enhance motility and viability during equilibration. The disaccharides, except lactose, reduced post-thaw dead sperm and/or damaged acrosome percentages without promoting post-thaw motility (P<0.01), whereas monosaccharides, especially fructose and xylose, improved motility (P<0.05) along with viability and intact acrosome rates (P<0.05). Trehalose, xylose and fructose significantly increased total active sperm rates (motility x live sperm rate x normal acrosome rate) compared to other sugars (P<0.01) and control (P<0.0001) in frozen thawed samples. Therefore, sugar supplementation of the extender influenced post-equilibration and post-thaw sperm quality, and the type or locality of protective impact of the sugar on dog spermatozoa vary according to type of the sugar.  相似文献   

4.
The objectives of the present study were to evaluate the effects of adding Equex to a TRIS-extender, diluting the semen in 1 or 2 steps, freezing according to 2 methods, thawing at 2 rates, and the interactions between these treatments, on the post-thaw survival of dog spermatozoa at 38 degrees C. Ten ejaculates were obtained from 8 dogs. Each ejaculate was centrifuged, and the seminal plasma was discarded. Each sperm pellet was diluted with 2 mL of a TRIS-glucose-egg yolk extender containing 3% glycerol (Extender 1 [Ext-1]). Ejaculates were then pooled (9 x 10(9) spermatozoa), and Ext-1 was added to obtain 200 x 10(6) spermatozoa/mL. The semen pool was carefully mixed and divided into aliquots, and processed according to a 2 x 2 x 2 x 2 factorial design to evaluate the effects of 1) adding the same volume of a second TRIS-glucose-egg yolk extender with 7% glycerol that contained (Ext-2-E) or didn't contain (Ext-2) 1% of Equex STM Paste (final concentration of spermatozoa 100 x 10(6) spermatozoa/mL, glycerol 5%, Equex 0% [Ext-2] or 0.5% [Ext-2-E]); 2) diluting the semen in 1 step (adding Ext-2 or Ext-2-E before equilibration) or in 2 steps (adding Ext-2 or Ext-2-E after equilibration, just before the freezing operation); 3) freezing the straws horizontally in a styrofoam box 4 cm above liquid nitrogen (LN2) or by lowering them vertically into a LN2 tank in 3 steps; and 4) thawing at 70 degrees C for 8 sec or at 37 degrees C for 15 sec. A total of 16 treatment combinations were evaluated. Sperm motility was evaluated after thawing and at 1-h intervals during 7 h of incubation at 38 degrees C by subjective examination and by using a CASA-system. Plasma membrane integrity and acrosomal status were evaluated simultaneously at 1, 3 and 6 h post-thaw using a triple fluorescent staining procedure and flow cytometry. The best post-thaw survival and thermoresistance of spermatozoa was obtained when Equex was present in the extender (P<0.0001); the semen dilution was performed in 2 steps instead of 1 (P<0.0001); the freezing was carried out using the box instead of the tank (P<0.05); and the straws were thawed at 70 degrees C for 8 sec instead of at 37 degrees C for 15 sec (P<0.0001).  相似文献   

5.
The influence oftemperature, addition of glycerol, initial freezing temperature, method of dilution, level of glycerol in the diluted semen, equilibration time and type of diluent on the survival and fertilizing capacity of deep-frozen according to the best conditions was compared with that of "fresh" semen. The addition of glycerol at plus30 degrees C resulted in a highly significant decrease in the mean proportion of motile spermatozoa immediately after thawing compared with the effect of addition at plus 4 degrees C. The immersion of the straws at minus55 degrees C significantly reduced the revival of the spermatozoa compared with initial freezing at lower temperatures. The exposure time to glycerol had no significant effect on the survival of spermatozoa after thawing and incubation, but fertility was significantly higher with 4% than with 2% glycerol. The I. N. R. A. diluent provided better sperm survival and a significantly higher conception rate than did lactose-egg yolk extender. The semen frozen according to the best conditions (about 50% of the samples) had a fertilizing ability similar to that of "fresh" semen when the proportion of motile spermatozoa before, and after 1 or 3 hr of incubation was equal to or above 45, 40 and 30% respectively.  相似文献   

6.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

7.
Huang C  Dong Q  Tiersch TR 《Theriogenology》2004,62(6):971-989
The objectives of this study were to evaluate the effects of cryoprotectant, osmotic pressure, cooling rate, equilibration time, and sperm-to-extender ratio, as well as somatic relationships of body length, body weight, and testis weight to sperm density in the platyfish Xiphophorus couchianus. Sperm motility and survival duration after thawing were significantly different between cryopreservation with dimethyl sulfoxide (DMSO) and glycerol, with the highest motility at 10 min after thawing obtained with 14% glycerol. With subsequent use of 14% glycerol as cryoprotectant, the highest motility after thawing was observed with Hanks' balanced salt solution (HBSS) across a range of 240-300 mOsm/kg. Samples cooled from 5 to -80 degrees C at 25 degrees C/min yielded the highest post-thaw motility, although no significant difference was found for cooling rates across the range of 20-30 degrees C/min. In addition, the highest motility after thawing was found in samples equilibrated from 10 to 30 min with 14% glycerol and cooled at 25 degrees C/min. The post-thaw motility declined rapidly with use of 10% glycerol and cooling at 5 degrees C/min across the equilibration range of 10 min to 2h. Sperm motility with a dilution ratio of sperm to extender of 1:10 was not different at 10 min after thawing with those samples at greater dilutions, but declined significantly from Day 1 after thawing and showed lower survival duration when stored at 4 degrees C. However, the additional dilution of sperm solutions with HBSS (300 mOsm/kg) immediately after thawing significantly slowed the decline of motility and prolonged the duration of survival. Based on the above findings, the highest average sperm motility (78+/-3 %) at 10 min after thawing was obtained when sperm were suspended in HBSS at 300 mOsm/kg with 14% glycerol as cryoprotectant, diluted at a ratio of sperm to HBSS-glycerol of 1:20, equilibrated for 10 min, cooled at 25 degrees C/min from 5 to -80 degrees C before plunging into liquid nitrogen, and thawed at 40 degrees C in a water bath for 7 s. If diluted within 5 h after thawing, sperm frozen by the above protocol retained continuous motility for 15 days when stored at 4 degrees C.  相似文献   

8.
Semen from five 2.5-yr-old rams selected for use in an AI program was collected over 3 consecutive days using an artificial vagina. The semen was diluted with a skim milk extender containing 7% glycerol (v/v), packed in French mini-straws (approx. 100 mill/straw), and frozen in a programmable freezer. Three freezing operations were carried out per ram. Three straws per freezing operation were subjected to the following thawing procedures: 1) 70 degrees C, 5 sec; 2) 50 degrees C, 9 sec and 3) 35 degrees C, 12 sec. Post-thaw sperm motility was subjectively assessed using a phase contrast microscope; while the combined fluorochromes carboxyfluorescein diacetate and propidium iodide (CFDA/PI), the hypo-osmotic swelling test (HOS) and the presence of normal apical ridges (NAR's) were used to determine the degree of sperm membrane integrity. Significant differences between thawing treatments were found for post-thaw motility (P < .05) and membrane integrity (P < 0.01), and variation among rams was statistically significant. Post-thaw sperm motility as well as the percentage of spermatozoa showing intact membranes were significantly higher (P < 0.01) for straws thawed at 70 degrees C than for those thawed at 35 degrees C (67.0 +/- 1.1 and 63.0 +/- 1.1%, and 50.5 +/- 1.5 and 41.7 +/- 1.5%, respectively). However, no corresponding statistically significant difference could be found for these parameters when 70 degrees C and 50 degrees C thawing were compared. It was concluded that sperm can be thawed at 50 degrees C for 9 sec instead of 70 degrees C for 5 sec without further reducing sperm motility or membrane integrity. This lower thawing temperature would facilitate the widespread use of frozen/thawed ram semen under farm conditions in Sweden.  相似文献   

9.
Fifteen extenders were produced by adding dimethyl sulfoxide (DMSO) at 8, 10 or 12% of diluent volume to 5 diluents. All extenders were cooled to 4 degrees C. Pooled Atlantic salmon (Salmo salar ) semen with greater than 90% progressive motility was kept at 4 degrees C and added to each extender so that the semen was diluted 1:3 (semen:extender). The equilibration time was less than 5 minutes at 4 degrees C. The extended semen was loaded into 0.5-ml straws and was cooled from 4 degrees C to -90 degrees C at a rate of 30 degrees C per minute. The straws were then plunged into liquid nitrogen for storage. Fluorometry was used to determine the viability of the semen in each of the extenders after freezing and thawing. Cryopreservation of Atlantic salmon semen in Extender 3 (0.137 M NaCl, 0.011 M KCl, 0.004 M Na(2)HPO(4).7H(2)O, 7.5 g/l L-alpha-lecithin and 12% dimethyl sulfoxide) and Extender 12 (0.100 M KHCO(3), 0.0065 M reduced glutathione, 0.125 M sucrose and 12% dimethyl sulfoxide) resulted in significantly (P<0.05) lower percentages of dead spermatozoa than for the other extenders. Furthermore, there was a significantly (P<0.05) lower percentage of dead cells in Extender 3 than in Extender 12.  相似文献   

10.
M A Garcia  E F Graham 《Cryobiology》1987,24(5):429-436
The effects of the dialyzable fractions from bovine seminal plasma, egg yolk, and milk and of two buffer systems (TEST and sodium citrate) on post-thaw sperm motility were studied. Each basic salt solution was used in the experimental design. These solutions were used as extender systems in combination with egg yolk and glycerol. After collection, semen samples were extended (1:20), cooled to 5 degrees C in 1.5 hr, and frozen in 0.5-cc French straws after 3 hr of equilibration. Post-thaw samples were assayed for percentage of motile cells immediately after thawing and after 4 hr of incubation at room temperature (22 degrees C). Egg yolk (25%) provided the same protection as did the combination of colloidal material present in the skim milk-yolk extenders. The use of TEST as a buffer provided significantly higher (P less than 0.01) sperm post-thaw motility than milk salts or Na citrate. Sperm survival in extenders containing high concentrations of seminal plasma and/or egg yolk salts was significantly lower (P less than 0.01). Spermatozoa frozen in the presence of 6% glycerol resulted in sperm motility significantly (P less than 0.05) higher than that of spermatozoa frozen with 3% glycerol. However, no difference was observed between these two concentrations when TEST solution was used.  相似文献   

11.
We investigated the use of duck egg yolk (DEY), Guinea fowl egg yolk (GFEY) and Indian indigenous hen (Desi) egg yolk (IDEY) in extender for improving the post-thaw quality of buffalo (Bubalus bubalis) bull spermatozoa, and compared it with commercial hen egg yolk (CHEY; control). For this purpose, two consecutive ejaculates of semen from each of two Nili-Ravi buffalo bulls were collected on 1 day each week for 5 weeks (replicates; n=5) with artificial vagina (42 degrees C). Split pooled ejaculates, were diluted in tris-citric acid glycerol extender containing either DEY or GFEY or IDEY or CHEY at 37 degrees C. Extended semen was cooled to 4 degrees C in 2 h and equilibrated for 4 h at 4 degrees C. Cooled semen was then filled in 0.5 ml straws at 4 degrees C and frozen in programmable cell freezer. Thawing of semen was performed at 37 degrees C for 30 s. Sperm motility, plasma membrane integrity and sperm morphology (acrosome integrity, head, mid-piece and tail abnormalities) of each semen sample were assessed at 0, 3 and 6 h after thawing and incubation at 37 degrees C. Visual motility (%) and percentage of intact plasma membranes assessed at 6h post-thaw of buffalo bull spermatozoa were highest (P<0.05) due to DEY as compared to GFEY, IDEY and control. The percentage of spermatozoa with normal acrosomes at 0, 3 and 6 h post-thaw was highest (P<0.05) in DEY extender than GFEY, IDEY and CHEY. Sperm tail abnormalities (%) observed at 0, 3 and 6 h post-thaw in samples cryopreserved with freezing extender having DEY were lower (P<0.05) as compared to extender containing GFEY, IDEY and CHEY. In conclusion, DEY compared to other avian yolks in extender improves the frozen-thawed quality of buffalo bull spermatozoa.  相似文献   

12.
Semen was collected by digital manipulation from six adult dogs. The second fraction of the ejaculate was used in this study. The semen was assessed by macroscopic and microscopic criteria 1 min after collection, first dilution, cooling, glycerol addition and thawing. Experiments were conducted to compare the effect of three different concentrations of glycerol in coconut water extender. The freezing method employed was that one described for caprine semen with slight changes. Semen was thawed at 37 degrees C for 1 min. Spermatozoal motility after thawing was 49.2+/-26, 44.2+/-18.3 and 35.8+/-26.8% for groups with 4, 6 and 8% glycerol, respectively. The vigor after thawing was 2.6+/-1.1, 2.7+/-1.0 and 2.1+/-1.2 for these groups, respectively. There was no difference among groups in motility and vigor. However, a smaller percentage of total and secondary abnormalities was observed using 6% glycerol in coconut water extender. In conclusion, the three glycerol concentrations (4, 6 or 8%) can be used successfully in cryopreservation of canine semen using a coconut water extender.  相似文献   

13.
Z. Nur  B. Zik  H. Sagirkaya 《Theriogenology》2010,73(9):1267-350
This study investigates the effects of glycerol, 1,2 propanediol, sucrose, and trehalose on post-thaw motility, morphology, and genome integrity of Awassi ram semen. Ejaculates of thick consistency with rapid wave motion (>+++) and >70% initial motility were pooled. Sperm were diluted to a final concentration of 1/5 (semen/extender) in 0% cryoprotectant, 6% glycerol, 6% 1,2 propanediol, 62.5 mM sucrose or 62.5 mM trehalose using a two-step dilution method. The equilibrated semen was frozen in 0.25-ml straws. Semen samples were examined for sperm motility, defective acrosomes (FITC-Pisum sativum agglutinin (FITC PSA)), DNA integrity (acridine orange staining (AO)) and apoptotic activity (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and Caspase-3 activity) at four time points: after dilution with extender A, after cooling to 5 °C, after equilibration and post-thaw. Freezing and thawing procedures (cooling at 5 °C, dilution, equilibration, and thawing) had negative effects on motility (P < 0.001), acrosome integrity (P < 0.001), and DNA integrity as determined by AO (P < 0.001) and TUNEL (P < 0.001) assays. There were positive correlations between sperm with defective acrosomes and apoptotic (AO- and TUNEL-positive) spermatozoa. In contrast, a significant negative correlation was found between sperm motility and defective acrosomes and AO- and TUNEL positivity (P < 0.01). The cryopreservation process acts as an apoptotic inducer in ram semen; all cryoprotectants used in the present study allowed apoptosis to some extent, with negative effects on sperm morphology and DNA integrity. The glycerol group performed better than the propanediol, sucrose, trehalose, and control groups in terms of post-thaw sperm motility but not DNA integrity.  相似文献   

14.
The aim of this study was to compare the effect of ethylene glycol versus glycerol for dog semen freezing, on post-thaw longevity, motility and motility parameters, and on plasma membrane functional integrity. Semen was diluted in two steps with an egg yolk TRIS extender containing a final concentration of either 5% glycerol or 5% ethylene glycol, and frozen in 0.5 ml straws, with 100 x 10(6) spermatozoa/ml, over nitrogen vapours. Semen motility was evaluated both under a light microscope and with a Computer Assisted Motility Analyser System, immediately after thawing and then hourly till 4h of incubation. Sperm membrane functional integrity was assessed with the hypoosmotic swelling test (60 mOsm fructose solution) applied at thawing and then hourly, for 4 h, on incubated samples. Motility (light microscope) and total and progressive motility (analyser) were significantly higher in ethylene glycol frozen samples at thawing (P < 0.01); from hour 1 onwards the effect of the cryoprotectant became not significant. Semen frozen with ethylene glycol showed higher path velocity and higher straight line velocity till 3 h after thawing; however, ethylene glycol semen samples also showed higher curvilinear velocity and higher lateral head displacement, which may indicate a capacitation-like condition affecting sperm membranes and possibly reducing post-thaw longevity. Functional integrity of plasma membrane was similar in glycerol and ethylene glycol samples till 3 h after thawing, then ethylene glycol samples showed a higher decline. The strong though short-lived positive effect of ethylene glycol is worth being evaluated further.  相似文献   

15.
Cryopreservation of seabream (Sparus aurata) spermatozoa   总被引:3,自引:0,他引:3  
The aim of this research was to optimize protocols for freezing spermatozoa of seabream (Sparus aurata). All the phases of the cryopreservation procedure (sampling, choosing the cryoprotective extender, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa under examination, so as to be able to restore on thawing the morphological and physiological characteristics of fresh semen. Seabream spermatozoa were collected by stripping and transported to the laboratory chilled (0-2 degrees C). Five cryoprotectants, dimethyl sulfoxide (Me(2)SO), ethylene glycol (EG), 1,2-propylene glycol (PG), glycerol, and methanol, were tested at concentrations between 5 and 15% by volume to evaluate their effect on the motility of semen exposed for up to 30 min at 26 degrees C. The less toxic cryoprotectants, 10% EG, 10% PG, and 5% Me(2)SO, respectively, were added to 1% NaCl to formulate the extenders for freezing. The semen was diluted 1:6 with the extender, inserted into 0.25-ml plastic straws by Pasteur pipette, and frozen using a cooling rate of either 10 or 15 degrees C/min to -150 degrees C followed by transfer and storage in liquid nitrogen (-196 degrees C). The straws were thawed at 15 degrees C/s. On thawing, the best motility was obtained with 5% Me(2)SO, although both 10% PG and EG showed good results; no differences were found between the two freezing gradients, although semen frozen with the 10 degrees C/min gradient showed a slightly higher and more prolonged motility.  相似文献   

16.
Dog spermatozoa have better quality after thawing in water at 70-75 degrees C instead of 35-38 degrees C. The aim of Experiment 1 was to determine the time needed to thaw 0.5 mL straws in just-boiled (98 degrees C) water and that of Experiment 2 to determine whether thawing frozen dog spermatozoa in just-boiled water will result in better quality than thawing in water at 70 degrees C. Prior to freezing the straws of Experiment 1, a Type J thermocouple with wire diameters of 0.08 mm (Osiris Technical Systems, Centurion, South Africa) was placed in the center of each of ninety-three 0.5 mL straws (IMV Technologies, L'Aigle, France) filled with extender (Biladyl* with 0.5%, v/v of Equex STM paste**) and 54 filled with extender plus 200 x 10(6)spermatozoa/mL (Minitüb, Germany (*) and Nova Chemical Sales, MA (**)). Thirty straws with extender were thawed in water at 70 degrees C and the others in just-boiled water. Temperatures inside straws were recorded 10 times/s during warming. Two ejaculates were then collected from each of eight dogs and one from each of three others. Extended ejaculates from the same dog were pooled, frozen 8 cm above liquid nitrogen, and 2 straws from each of the 11 batches thawed in water at 70 degrees C for 8s and 2 in just-boiled water for 6.5s. Sperm morphology and viability were assessed on eosin-nigrosin smears made after thawing and the percentage progressively motile spermatozoa was estimated immediately, 1, 2 and 3h after thawing. The optimal submersion time in just-boiled water was 6.5s for both sperm concentrations, resulting in average temperatures of 23.6+/-1.5 degrees C (+/-S.E.M.) and 24.9+/-1.6 degrees C inside straws with extender or extender plus spermatozoa (P=0.6). The temperature inside straws thawed in water at 70 degrees C was 13.6+/-1.7 degrees C after 8s. Apart from a 1.5% higher (P<0.05) mean percentage motile sperm 2h after thawing, thawing dog spermatozoa in just-boiled (98 degrees C) water holds no benefit over thawing in water at 70 degrees C, which is easier to do.  相似文献   

17.
The objectives of this study were to evaluate the effects and interactions of freezing dog semen using 4 different sperm concentrations (50 x 10(6), 100 x 10(6), 200 x 10(6) and 400 x 10(6) spermatozoa/mL) in 0.5-mL straws and diluting the thawed semen at 4 different rates (1:0, 1:1, 1:2 and 1:4) on post-thaw survival and longevity of dog spermatozoa during incubation at 38 degrees C. Fifteen ejaculates were collected from 12 dogs and pooled. The semen pool was divided into 4 aliquots containing respectively 4,200 x 10(6), 2,100 x 10(6), 1,050 x 10(6) and 525 x 10(6) spermatozoa, which were centrifuged. Sperm pellets were rediluted with TRIS-glucose-egg yolk extender containing 5% glycerol and 0.5% of Equex STM Paste to obtain the designated sperm concentrations. The semen was frozen in 0.5-mL straws 4 cm above liquid nitrogen (LN2). The straws were thawed at 70 degrees C for 8 sec and the contents of each straw were divided into 4 aliquots and diluted with TRIS buffer at 38 degrees C at rates of 1:0, 1:1, 1:2 and 1:4 (semen:buffer), respectively, making a total of 16 treatments. Sperm motility was subjectively evaluated after thawing and at 1-h intervals during 8 h of incubation at 38 degrees C. Plasma membrane integrity and acrosomal status were evaluated at 1, 3, 6, 12 and 18 h post-thaw using a triple-staining procedure and flow cytometry. For data pooled across the post-thaw dilution rate, motility was higher (P< 0.001) in samples frozen with 200 x 10(6) spermatozoa/mu. The integrity of sperm plasma membranes after 18 h incubation was higher (P<0.05) in samples frozen with 200 x 10(6) and 400 x 10(6) spermatozoa/mL. For data pooled across sperm concentration, samples diluted at a rate of 1:2 or 1:4 had better (P<0.001) motilities after 8 h of incubation than undiluted samples or those diluted at 1:1. The integrity of the sperm plasma membranes was higher (P<0.001) at increasing dilution rates. When the 16 treatments were compared, the best longevity was obtained when semen packaged at a concentration of 200 x 10(6) spermatozoa/mL was diluted immediately after thawing at 1:4 dilution rate.  相似文献   

18.
Computer-assisted sperm analyzers (CASA) have become the standard tool for evaluating sperm motility because they provide objective results for thousands of mammalian spermatozoa. Mammalian spermatozoa experience osmotic stress when the glycerol is added to the cells prior to freezing and removal from the cells after thawing. In order to minimize osmotic damage, cryoprotectants having lower molecular weights and greater membrane permeability than glycerol, were evaluated to determine their effectiveness for cryopreserving bull spermatozoa. The aim of this study was to compare the cryopreservation effects of low molecular weight cryoprotectants (ethylene glycol and methanol) to glycerol, on post-thaw CASA sperm parameters. Bull semen was diluted with tris-egg yolk extender containing 3% glycerol, 3, 2 and 1% ethylene glycol or 3, 2 and 1% methanol. Bull semen was frozen in 0.5 straws. Bull spermatozoa exhibited higher percentages (p<0.01) for total (Mot, 72.4%) and progressively (Prog, 29.5%) motilities when frozen in extender containing 3% glycerol compared to 3, 2 and 1% ethylene glycol or 3, 2 and 1% methanol. In conclusion, no advantages were found in using ethylene glycol or methanol to replace glycerol in bull semen freezing. Glycerol provided the best sperm characteristics for bull spermatozoa after freezing and thawing. The possibility of using ethylene glycol or methanol as permeating cryoprotectants for bull semen deserves further investigation, and these cryoprotectants should also be evaluated in extenders that contain disaccharides or cholesterol.  相似文献   

19.
The effect of lactose and glycerol concentration, as well as the equilibration time with glycerol was studied on motility, normal apical ridge (NAR), and chromatin state of boar spermatozoa after the freezing and thawing process. In the first experiment, samples were frozen in first and second extenders containing different concentrations of lactose (11, 12 and 14%). In the second experiment samples were frozen using second extenders with different concentrations of glycerol (4, 6, 8 and 10%) and were incubated at 5 degrees C for 0 and 30 min. Motility, motility after caffeine treatment, NAR, chromatin condensation and stability (susceptibility to de-condense after heparin treatment) were evaluated. The results indicated that freezing spermatozoa in extenders with increasing concentrations of lactose adversely affected motility but provided a protective effect on acrosomes. Increased lactose concentration induced higher chromatin condensation but maintained the same stability. Increasing the glycerol concentration in the second extender from 4-6 to 8% led to higher motility and NAR as well as lower chromatin condensation and stability. When 30 min equilibration time was allowed after dilution with the same extenders, spermatozoa showed higher NAR and lower chromatin condensation and stability. The longer equilibration time was detrimental for motility when freezing in the 8% glycerol extender but favourable when using the 4% glycerol extender. Compared to the 8% glycerol, spermatozoa frozen in the 10% glycerol extender showed similar motility and increased chromatin condensation and stability, as well as low values of NAR that did not improve by longer incubation time.  相似文献   

20.
Ji XS  Zhao Y  Chen SL  Jiang YL  Wang H  Song JY  Ding L  Chen HJ 《Theriogenology》2008,69(7):793-797
Although sperm from several fish species have been successfully cryopreserved, few studies have been done in small and/or endangered species. The aim of the present work was to develop a method of freezing and refreezing Varicorhinus macrolepis semen in 1.8 mL cryovials. The effect of extenders and cryoprotectants on the motility of post-thaw sperm was examined. The motility of frozen-thawed sperm in extender D-15 was higher than that in MPRS and fish Ringer solution (P<0.05). Dimethyl sulfoxide (DMSO) and glycerol provided greater protection to sperm than methanol during freezing and thawing; the most effective concentration of DMSO and glycerol was 10%. The fertilization rate of frozen-thawed sperm was not significantly different from that of fresh sperm. Furthermore, mean (+/-S.D.) hatching rate did not differ significantly between frozen-thawed (82.7+/-12.4%) and fresh sperm (90.7+/-4.5%). Although frozen-thawed sperm that was immediately refrozen had 0% post-thaw motility, frozen semen that was refrozen after dilution with D-15 (containing DMSO at a ratio of 1:2) had post-thaw motility of 38.3+/-2.9%. Motility was lower for refrozen than for frozen sperm (P<0.05). Furthermore, fertilization and hatching rates of refrozen sperm were 42.9+/-6.7 and 34.1+/-10.5%, respectively, which were lower than that of fresh sperm (P<0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号