首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microsporidia are emerging human and veterinary pathogens known to infect every tissue type and organ system. Their infectious spore possesses a number of peculiar organelles, including the diagnostic polar tube. In a proteomics-driven effort to find novel components of this organelle in the human-pathogenic species Encephalitozoon cuniculi, we unexpectedly discovered a protein which localizes to punctate structures consistent with the appearance of relic mitochondria, or mitosomes. However, this novel protein did not colocalize with ferredoxin, a mitochondrial iron-sulfur cluster protein which shows a similar localization pattern by light microscopy. The distribution pattern of this protein thus suggests either a novel vesicular compartment that is similar to mitosomes in size and distribution, the presence of subdomains or branching architecture within mitosomes, or heterogeneity in the protein composition of E. cuniculi mitosomes.  相似文献   

2.
Microsporidia are obligate intracellular parasites, phylogenetically allied to the fungi. Once considered amitochondriate, now a number of mitochondrion-derived genes have been described from various species, and the relict organelle was recently identified in Trachipleistophora hominis. We have investigated the expression of potential mitochondrial targeted proteins in the spore stage to determine whether the organelle is likely to have a role in the spore or early infection stage. To investigate whether the Antonospora locustae genome codes for a different complement of mitochondrial proteins than Encephalitozoon cuniculi an EST library was searched for putative mitochondrial genes that have not been identified in the E. cuniculi genome project. The spore is the infectious stage of microsporidia, but is generally considered to be metabolically dormant. Fourteen genes for putatively mitochondrion-targeted proteins were shown to be present in purified spore mRNA by 3'-rapid amplification of cDNA ends and EST sequencing. Pyruvate dehydrogenase E1alpha and mitochondrial glycerol-3-phosphate dehydrogenase proteins were also shown to be present in A. locustae and E. cuniculi spores, respectively, suggesting a role for these proteins in the early stages of infection, or within the spore itself. EST sequencing also revealed two mitochondrial protein-encoding genes in A. locustae that are not found in the genome of E. cuniculi. One encodes a possible pyruvate transporter, the other a subunit of the mitochondrial inner membrane peptidase. In yeast mitochondria, this protein is part of a trimeric complex that processes proteins targeted to the inner membrane and the intermembrane space, and its substrate in A. locustae is presently unknown.  相似文献   

3.
An intronless gene encoding a protein of 592 amino acid residues with similarity to 70-kDa heat shock proteins (HSP70s) has been cloned and sequenced from the amitochondrial protist Encephalitozoon cuniculi (phylum Microsporidia). Southern blot analyses show the presence of a single gene copy located on chromosome XI. The encoded protein exhibits an N-terminal hydrophobic leader sequence and two motifs shared by proteobacterial and mitochondrially expressed HSP70 homologs. Phylogenetic analysis using maximum likelihood and evolutionary distances place the E. cuniculi sequence in the cluster of mitochondrially expressed HSP70s, with a higher evolutionary rate than those of homologous sequences. Similar results were obtained after cloning a fragment of the homologous gene in the closely related species E. hellem. The presence of a nuclear targeting signal-like sequence supports a role of the Encephalitozoon HSP70 as a molecular chaperone of nuclear proteins. No evidence for cytosolic or endoplasmic reticulum forms of HSP70 was obtained through PCR amplification. These data suggest that Encephalitozoon species have evolved from an ancestor bearing mitochondria, which is in disagreement with the postulated presymbiotic origin of Microsporidia. The specific role and intracellular localization of the mitochondrial HSP70-like protein remain to be elucidated.   相似文献   

4.
Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub) ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.  相似文献   

5.
Tang F  Wang B  Li N  Wu Y  Jia J  Suo T  Chen Q  Liu YJ  Tang J 《PloS one》2011,6(9):e24367
Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting mitochondria for autophagy have not been revealed. Here we show that human RNF185 is a mitochondrial ubiquitin E3 ligase that regulates selective mitochondrial autophagy in cultured cells. The two C-terminal transmembrane domains of human RNF185 mediate its localization to mitochondrial outer membrane. RNF185 stimulates LC3II accumulation and the formation of autophagolysosomes in human cell lines. We further identified the Bcl-2 family protein BNIP1 as one of the substrates for RNF185. Human BNIP1 colocalizes with RNF185 at mitochondria and is polyubiquitinated by RNF185 through K63-based ubiquitin linkage in vivo. The polyubiquitinated BNIP1 is capable of recruiting autophagy receptor p62, which simultaneously binds both ubiquitin and LC3 to link ubiquitination and autophagy. Our study might reveal a novel RNF185-mediated mechanism for modulating mitochondrial homeostasis through autophagy.  相似文献   

6.
PINK1 is a mitochondrial kinase mutated in some familial cases of Parkinson's disease. It has been found to work in the same pathway as the E3 ligase Parkin in the maintenance of flight muscles and dopaminergic neurons in Drosophila melanogaster and to recruit cytosolic Parkin to mitochondria to mediate mitophagy in mammalian cells. Although PINK1 has a predicted mitochondrial import sequence, its cellular and submitochondrial localization remains unclear in part because it is rapidly degraded. In this study, we report that the mitochondrial inner membrane rhomboid protease presenilin-associated rhomboid-like protein (PARL) mediates cleavage of PINK1 dependent on mitochondrial membrane potential. In the absence of PARL, the constitutive degradation of PINK1 is inhibited, stabilizing a 60-kD form inside mitochondria. When mitochondrial membrane potential is dissipated, PINK1 accumulates as a 63-kD full-length form on the outer mitochondrial membrane, where it can recruit Parkin to impaired mitochondria. Thus, differential localization to the inner and outer mitochondrial membranes appears to regulate PINK1 stability and function.  相似文献   

7.
Both estrogen receptors (ER) alpha (ERalpha) and beta (ERbeta) are localized in the nucleus, plasma membrane, and mitochondria, where they mediate the different physiological effects of estrogens. It has been observed that the relative subcellular localization of ERs is altered in several cancer cells. We have demonstrated that MCF-10F cells, the immortal and non-tumorigenic human breast epithelial cells (HBEC) that are ERalpha-negative and ERbeta-positive, are transformed in vitro by 17beta-estradiol (E(2)), generating highly invasive cells that are tumorigenic in severe combined immunodeficient mice. E(2)-transformed MCF-10F (trMCF) cells exhibit progressive loss of ductulogenesis, invasive (bsMCF) and tumorigenic (caMCF) phenotypes. Immunolocalization of ERbeta by confocal fluorescent microscopy and electron microscopy revealed that ERbeta is predominantly localized in mitochondria of MCF-10F and trMCF cells. Silencing ERbeta expression with ERbeta-specific small interference RNA (siRNA-ERbeta) markedly diminishes both nuclear and mitochondrial ERbeta in MCF-10F cells. The ERbeta shifts from its predominant localization in the mitochondria of MCF-10F and trMCF cells to the nucleus of bsMCF cells, becoming predominantly nuclear in caMCF cells. Furthermore, we demonstrated that the mitochondrial ERbeta in MCF-10F cells is involved in E(2)-induced expression of mitochondrial DNA (mtDNA)-encoded respiratory chain (MRC) proteins. This is the first report of an association of changes in the subcellular localization of ERbeta with various stages of E(2)-induced transformation of HBEC and a functional role of mitochondrial ERbeta in mediating E(2)-induced MRC protein synthesis. Our findings provide a new insight into one of the potential roles of ERbeta in human breast cancer.  相似文献   

8.
We have recently described the expression and intracellular localization of ER α in murine C2C12 cells and skeletal muscle tissue. In separate studies, a protective role of 17β-estradiol against apoptosis exerted mainly at the mitochondrial level was also shown in the C2C12 muscle cell line. However, this functional evidence was in accordance with the participation of ER β. We have then here investigated the expression and subcellular distribution of native ER β in similar skeletal muscle cultured cells and tissue developed in vivo. ER β was detected by immunoblotting using specific antibodies and ligand blot analysis after subcellular fractionation. Immunolocalization was confirmed using conventional and confocal microscopy. ER β was found to a great extent in mitochondria and in lower amounts in the cytosolic fraction, differently to ER α which localizes in microsomes, cytosol, mitochondria, and also in the nucleus of muscle tissue. ER β expression was also demonstrated by RT-PCR. Finally, the mitochondrial localization of native ER β in C2C12 muscle cells was corroborated after transient transfection with specific ER β siRNAs. These data raise the possibility that the antiapoptotic action of 17β-estradiol in muscle cells may be related in part to a direct action of the hormone on mitochondria through ER β.  相似文献   

9.
The influence of sexual category as a modifier of cellular function is underinvestigated. Whether sex differences affect estrogen-mediated mitochondrial cytoprotection was determined using cell cultures of normal human lens epithelia (nHLE) from postmortem male and female donors. Experimental indicators assessed included differences in estrogen receptor-beta (ERbeta) isoform expression, receptor localization in mitochondria, and estrogen-mediated prevention of loss of mitochondrial membrane potential using the potentiometric fluorescent compound JC-1 after nHLE were exposed to peroxide. The impact of wild-type ERbeta (wtERbeta1) was also assessed using wtERbeta1 siRNA to suppress expression. A triple-primer PCR assay was employed to determine the proportional distribution of the receptor isoforms (wtERbeta1, -beta2, and -beta5) from the total ERbeta message pool in male and female cell cultures. Irrespective of sex, nHLE express wtERbeta1 and the ERbeta2 and ERbeta5 splice variants in similar ratios. Confocal microscopy and immunofluorescence revealed localization of the wild-type receptor in peripheral mitochondrial arrays and perinuclear mitochondria as well as nuclear staining in both cell populations. The ERbeta2 and ERbeta5 isoforms were distributed primarily in the nucleus and cytosol, respectively; no association with the mitochondria was detected. Both male and female nHLE treated with E(2) (1 muM) displayed similar levels of protection against peroxide-induced oxidative stress. In conjunction with acute oxidative insult, RNA suppression of wtERbeta1 elicited the collapse of mitochondrial membrane potential and markedly diminished the otherwise protective effects of E(2). Thus, whereas the estrogen-mediated prevention of mitochondrial membrane permeability transition is sex independent, the mechanism of estrogen-induced mitochondrial cytoprotection is wtERbeta1 dependent.  相似文献   

10.
11.
Mitochondria have long been recognized as cellular energy power houses that also regulate cellular redox signaling to arbitrate cell survival. Recent studies of mitochondria in stem cells (SCs) demonstrate that they have critical roles beyond this traditional view. Embryonic (E) SCs, termed pluripotent for their ability to differentiate into all cell types within an organism, maintain a limited number of morphologically undifferentiated (electron translucent and poorly formed cristae) mitochondria. As these cells differentiate, their mitochondria undergo a tightly choreographed gain of number, mass and morphological complexity. Therefore, mechanisms that regulate mitochondrial growth, localization, division and partition must play active roles in the maintenance of pluripotency and execution of differentiation. Aberrant mitochondrial dynamics are associated with a plethora of human disorders, for which SCs hold curative potential. Hence, a comprehensive understanding of the mechanisms that regulate mitochondrial dynamics and function in SCs and their overall relationship to the maintenance of pluripotency is pivotal for the progression of therapeutic regenerative medicine.  相似文献   

12.
There are 3 strains of Encephalitozoon cuniculi that occur in mammals. Strain III is associated with clinical disease in dogs, although some can be asymptomatic carriers and excrete spores in their urine. Several cases of human E. cuniculi infection caused by strain III have been observed in immunocompromised patients, indicating that E. cuniculi should be considered a zoonotic agent. Encephalitozoon cuniculi can cause fatal disease in maternally-infected or young dogs. Clinical signs in these animals included blindness, encephalitis, retarded growth rate, and nephritis. Encephalitozoon cuniculi has also been associated with primary renal failure in adult dogs. The present study used the direct agglutination test (DAT, cut-off 1:50) and the indirect fluorescent antibody test (IFAT, cut-off 1:10) to examine the prevalence of antibodies to E. cuniculi in dogs from Brazil and Colombia. Using the DAG, 31 (27.4%) of 113 dogs from Brazil and 47 (18.5%) of 254 dogs from Colombia were seropositive. Nine (14.3%) of 63 dogs from Brazil and 18 (35.3%) of the 51 dogs from Colombia were seropositive by indirect immunofluorescent antibody test. These results indicate that dogs from Brazil and Colombia are exposed to E. cuniculi.  相似文献   

13.
Little is known concerning the heterogeneity of mitochondrial shape, size, number, cytoplasmic distribution, and motility in planta. Ultrastructural studies using the electron microscope have shown a variety of mitochondrial shapes and sizes within fixed cells, however, it is not possible to dismiss the possibility that any heterogeneity observed resulted from preparation or fixation artefacts. Unambiguous demonstration of the extent and nature of mitochondrial heterogeneity in vivo necessitates the use of a truly in vivo mitochondrial detection system. Green fluorescent protein is an excellent in vivo marker for gene expression and protein localization studies. It is particularly useful for real-time spatiotemporal analysis of intracellular protein targeting and dynamics and as such is an ideal marker for analysing mitochondria in planta. Stably transformed Arabidopsis lines have been generated with GFP targeted to the mitochondria using either of two plant mitochondrial signal sequences from the beta-ATPase subunit or the mitochondrial chaperonin CPN-60. Mitochondrially targeted GFP, which is easily detectable using an epifluorescent or confocal microscope, highlights heterogeneity of mitochondrial shape, size, position, and dynamic within living plant cells.  相似文献   

14.
Microsporidia are amitochondriate eukaryotic microbes with fungal affinities and a common status of obligate intracellular parasites. A set of 13 potential genes encoding ATP-binding cassette (ABC) systems was identified in the fully sequenced genome of Encephalitozoon cuniculi. Our analyses of multiple alignments, phylogenetic trees and conserved motifs support a distribution of E. cuniculi ABC systems within only four subfamilies. Six half transporters are homologous to the yeast ATM1 mitochondrial protein, a finding which is in agreement with the hypothesis of a cryptic mitochondrion-derived compartment playing a role in the synthesis and transport of Fe-S clusters. Five half transporters are similar to the human ABCG1 and ABCG2 proteins, involved in regulation of lipid trafficking and anthracyclin resistance respectively. Two proteins with duplicated ABC domains are clearly candidate to non-transport ABC systems: the first is homologous to mammalian RNase L inhibitor and the second to the yeast translation initiation regulator GCN20. An unusual feature of ABC systems in E. cuniculi is the lack of homologs of P-glycoprotein and other ABC transporters which are involved in multiple drug resistance in a large number of eukaryotic microorganisms.  相似文献   

15.
16.
Itoh T  Toh-E A  Matsui Y 《The EMBO journal》2004,23(13):2520-2530
Class V myosins play a pivotal role in organelle distribution. In the budding yeast, Myo2p, a class V myosin, is essential for mitochondrial distribution. We identified MMR1 as a high-dose suppressor of the myo2 mitochondrial defect and that Mmr1p resides restrictively on the bud-localizing mitochondria and forms a complex with Myo2p tail. Mmr1p loss delayed mitochondrial transfer to buds and completely abolished mitochondrial distribution in the absence of Ypt11p, which promotes mitochondrial distribution by complex formation with Myo2p tail. The myo2-573 mutation, which causes a mitochondrial distribution defect and inactivates the Mmr1p function, reduced association between Myo2p and Mmr1p and depolarized Mmr1p localization on mitochondria. These strongly suggest that Mmr1p is a key mitochondrial component of the link between Myo2p and mitochondria for Myo2p-dependent mitochondrial distribution. Genetical analysis revealed that the Mmr1p-Myo2p pathway is independent of the Ypt11p-Myo2p pathway, suggesting that an essential system for mitochondrial distribution is composed of two independent Myo2p pathways.  相似文献   

17.
18.
The mitochondrial genome of Chlamydomonas reinhardtii only encodes three expressed tRNA genes, thus most mitochondrial tRNAs are likely imported. The sharing of tRNAs between chloroplasts and mitochondria has been speculated in this organism. We first demonstrate that no plastidial tRNA is present in mitochondria and that the mitochondrial translation mainly relies on the import of nucleus-encoded tRNA species. Then, using northern analysis, we show that the extent of mitochondrial localization for the 49 tRNA isoacceptor families encoded by the C. reinhardtii nuclear genome is highly variable. Until now the reasons for such variability were unknown. By comparing cytosolic and mitochondrial codon usage with the sub-cellular distribution of tRNAs, we provide unprecedented evidence that the steady-state level of a mitochondrial tRNA is linked not only to the frequency of the cognate codon in mitochondria but also to its frequency in the cytosol, then allowing optimal mitochondrial translation.  相似文献   

19.
Encephalitozoon cuniculi is a parasite that has been identified as a cause of opportunistic infections in immunocompromised individuals. This study was performed to evaluate E. cuniculi infection in pharmacologically immunosuppressed mice. Mice were immunosuppressed with cyclophosphamide (100mg/kg twice a week, IP) or cyclosporin (10mg/kg daily, IP) and inoculated with 10(7)E. cuniculi spores IP. The E. cuniculi spores were cultivated in MDCK cells. E. cuniculi identification was performed by light microscopy studies using Gram-Chromotrope, Hematoxylin-Eosin and Toluidine blue-fuchsin staining techniques, as well as by PCR at 15, 30 and 45 days post-inoculation (DPI). Cyclophosphamide-immunosuppressed mice have greatly reduced amounts of CD8(+), CD4(+) and CD3(+) T cells and CD19(+) B cells. The cells from these mice were analyzed by FACS and showed acute disseminated and fatal encephalitozoonosis. Mice treated with ciclosporin, which is both antiparasitic and immunosuppressive, have a milder, chronic, non-lethal infection and showed a significant reduction only in CD3(+) and CD4(+) T cell numbers. Our results support the role of CD8(+) T cells in controlling infection by E. cuniculi and show that preventive measures are essential for preventing this zoonosis in individuals undergoing chemotherapy for cancer or other immunosuppressive therapies.  相似文献   

20.
Interactions of mitochondria with the cytoskeleton are crucial for normal mitochondrial function and for localization of the organelle at its sites of action within cells. Early studies revealed a role for microtubule motors in mitochondrial motility in neurons and other cell types. Here, we describe advances in our understanding of mitochondrial movement and distribution. Specifically, we review recent studies on proteins that mediate or regulate the interaction between motor molecules and the organelle, motor-independent mechanisms for mitochondrial motility, anchorage of mitochondria at cortical sites within cells and links between mitochondria-cytoskeleton interactions and mitochondrial plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号